![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | eqbrtr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | breq1i 4812 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
4 | 1, 3 | mpbir 221 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 class class class wbr 4805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 |
This theorem is referenced by: eqbrtrri 4828 3brtr4i 4835 infxpenc2 9056 pm110.643 9212 pwsdompw 9239 r1om 9279 aleph1 9606 canthp1lem1 9687 pwxpndom2 9700 neg1lt0 11340 halflt1 11463 3halfnz 11669 declei 11755 numlti 11758 sqlecan 13186 discr 13216 faclbnd3 13294 hashunlei 13425 hashge2el2dif 13475 geo2lim 14826 0.999... 14832 0.999...OLD 14833 geoihalfsum 14834 cos2bnd 15138 sin4lt0 15145 eirrlem 15152 rpnnen2lem3 15165 rpnnen2lem9 15171 aleph1re 15194 1nprm 15615 strle2 16197 strle3 16198 1strstr 16202 2strstr 16206 rngstr 16223 srngfn 16231 lmodstr 16240 ipsstr 16247 phlstr 16257 topgrpstr 16265 otpsstr 16274 otpsstrOLD 16278 odrngstr 16289 imasvalstr 16335 0frgp 18413 cnfldstr 19971 zlmlem 20088 tnglem 22666 iscmet3lem3 23309 mbfimaopnlem 23642 mbfsup 23651 mbfi1fseqlem6 23707 aalioulem3 24309 aaliou3lem3 24319 dvradcnv 24395 asin1 24842 log2cnv 24892 log2tlbnd 24893 mule1 25095 bposlem5 25234 bposlem8 25237 zabsle1 25242 trkgstr 25564 0pth 27299 ex-fl 27637 blocnilem 27990 norm3difi 28335 norm3adifii 28336 bcsiALT 28367 nmopsetn0 29055 nmfnsetn0 29068 nmopge0 29101 nmfnge0 29117 0bdop 29183 nmcexi 29216 opsqrlem6 29335 dp2lt10 29922 dplti 29944 dpmul4 29953 locfinref 30239 dya2iocct 30673 signswch 30969 hgt750lem 31060 hgt750lem2 31061 subfaclim 31499 logi 31949 faclim 31961 cnndvlem1 32856 taupilem2 33498 cntotbnd 33927 diophren 37898 algstr 38268 binomcxplemnn0 39069 binomcxplemrat 39070 stirlinglem1 40813 dirkercncflem1 40842 fouriersw 40970 meaiunlelem 41207 evengpoap3 42216 exple2lt6 42674 nnlog2ge0lt1 42889 |
Copyright terms: Public domain | W3C validator |