![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eq0f | Structured version Visualization version GIF version |
Description: The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.) |
Ref | Expression |
---|---|
eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
eq0f | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑥∅ | |
3 | 1, 2 | cleqf 2920 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
4 | noel 4054 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | nbn 361 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
6 | 5 | albii 1888 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
7 | 3, 6 | bitr4i 267 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1622 = wceq 1624 ∈ wcel 2131 Ⅎwnfc 2881 ∅c0 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-dif 3710 df-nul 4051 |
This theorem is referenced by: neq0f 4061 eq0 4064 ab0 4086 bnj1476 31216 stoweidlem34 40746 |
Copyright terms: Public domain | W3C validator |