![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epweon | Structured version Visualization version GIF version |
Description: The epsilon relation well-orders the class of ordinal numbers. Proposition 4.8(g) of [Mendelson] p. 244. (Contributed by NM, 1-Nov-2003.) |
Ref | Expression |
---|---|
epweon | ⊢ E We On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordon 7024 | . 2 ⊢ Ord On | |
2 | ordwe 5774 | . 2 ⊢ (Ord On → E We On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ E We On |
Colors of variables: wff setvar class |
Syntax hints: E cep 5057 We wwe 5101 Ord word 5760 Oncon0 5761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 |
This theorem is referenced by: omsinds 7126 onnseq 7486 dfrecs3 7514 tfr1ALT 7541 tfr2ALT 7542 tfr3ALT 7543 ordunifi 8251 ordtypelem8 8471 oismo 8486 cantnfcl 8602 leweon 8872 r0weon 8873 ac10ct 8895 dfac12lem2 9004 cflim2 9123 cofsmo 9129 hsmexlem1 9286 smobeth 9446 gruina 9678 ltsopi 9748 dford5 31734 finminlem 32437 dnwech 37935 aomclem4 37944 |
Copyright terms: Public domain | W3C validator |