![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > episect | Structured version Visualization version GIF version |
Description: If 𝐹 is an epimorphism and 𝐹 is a section of 𝐺, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
sectepi.b | ⊢ 𝐵 = (Base‘𝐶) |
sectepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
sectepi.s | ⊢ 𝑆 = (Sect‘𝐶) |
sectepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
sectepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
sectepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
episect.n | ⊢ 𝑁 = (Inv‘𝐶) |
episect.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
episect.2 | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
Ref | Expression |
---|---|
episect | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | sectepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16500 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2724 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
5 | eqid 2724 | . . 3 ⊢ (Sect‘(oppCat‘𝐶)) = (Sect‘(oppCat‘𝐶)) | |
6 | sectepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 1 | oppccat 16504 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
9 | sectepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | sectepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | eqid 2724 | . . 3 ⊢ (Inv‘(oppCat‘𝐶)) = (Inv‘(oppCat‘𝐶)) | |
12 | episect.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
13 | sectepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 6, 4, 13 | oppcmon 16520 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 12, 14 | eleqtrrd 2806 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
16 | episect.2 | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
17 | sectepi.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
18 | 2, 1, 6, 10, 9, 17, 5 | oppcsect 16560 | . . . 4 ⊢ (𝜑 → (𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
19 | 16, 18 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹) |
20 | 3, 4, 5, 8, 9, 10, 11, 15, 19 | monsect 16565 | . 2 ⊢ (𝜑 → 𝐹(𝑌(Inv‘(oppCat‘𝐶))𝑋)𝐺) |
21 | episect.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
22 | 2, 1, 6, 9, 10, 21, 11 | oppcinv 16562 | . . 3 ⊢ (𝜑 → (𝑌(Inv‘(oppCat‘𝐶))𝑋) = (𝑋𝑁𝑌)) |
23 | 22 | breqd 4771 | . 2 ⊢ (𝜑 → (𝐹(𝑌(Inv‘(oppCat‘𝐶))𝑋)𝐺 ↔ 𝐹(𝑋𝑁𝑌)𝐺)) |
24 | 20, 23 | mpbid 222 | 1 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 Catccat 16447 oppCatcoppc 16493 Monocmon 16510 Epicepi 16511 Sectcsect 16526 Invcinv 16527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-tpos 7472 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-hom 16089 df-cco 16090 df-cat 16451 df-cid 16452 df-oppc 16494 df-mon 16512 df-epi 16513 df-sect 16529 df-inv 16530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |