![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epelc | Structured version Visualization version GIF version |
Description: The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epelc.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epelc | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epelc.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5059 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 E cep 5057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-eprel 5058 |
This theorem is referenced by: epel 5061 epini 5530 smoiso 7504 smoiso2 7511 ecid 7855 ordiso2 8461 oismo 8486 cantnflt 8607 cantnfp1lem3 8615 oemapso 8617 cantnflem1b 8621 cantnflem1 8624 cantnf 8628 wemapwe 8632 cnfcomlem 8634 cnfcom 8635 cnfcom3lem 8638 leweon 8872 r0weon 8873 alephiso 8959 fin23lem27 9188 fpwwe2lem9 9498 ex-eprel 27420 dftr6 31766 coep 31767 coepr 31768 brsset 32121 brtxpsd 32126 brcart 32164 dfrecs2 32182 dfrdg4 32183 cnambfre 33588 wepwsolem 37929 dnwech 37935 |
Copyright terms: Public domain | W3C validator |