![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > entr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity. Theorem 3 of [Suppes] p. 92. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
entr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 8166 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ertr 7924 | . 2 ⊢ (⊤ → ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶)) |
4 | 3 | trud 1640 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊤wtru 1631 Vcvv 3338 class class class wbr 4802 Er wer 7906 ≈ cen 8116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-er 7909 df-en 8120 |
This theorem is referenced by: entri 8173 en2sn 8200 xpsnen2g 8216 omxpen 8225 enen1 8263 enen2 8264 map2xp 8293 pwen 8296 ssenen 8297 phplem4 8305 php3 8309 snnen2o 8312 fineqvlem 8337 ssfi 8343 en1eqsn 8353 dif1en 8356 unfi 8390 unxpwdom2 8656 infdifsn 8725 infdiffi 8726 karden 8929 xpnum 8965 cardidm 8973 ficardom 8975 carden2a 8980 carden2b 8981 isinffi 9006 pm54.43 9014 pr2ne 9016 en2eqpr 9018 en2eleq 9019 infxpenlem 9024 infxpidm2 9028 mappwen 9123 finnisoeu 9124 cdaen 9185 cdaenun 9186 cda1dif 9188 cdaassen 9194 mapcdaen 9196 pwcdaen 9197 infcda1 9205 pwcdaidm 9207 cardacda 9210 ficardun 9214 pwsdompw 9216 infxp 9227 infmap2 9230 ackbij1lem5 9236 ackbij1lem9 9240 ackbij1b 9251 fin4en1 9321 isfin4-3 9327 fin23lem23 9338 domtriomlem 9454 axcclem 9469 carden 9563 alephadd 9589 gchcdaidm 9680 gchxpidm 9681 gchpwdom 9682 gchhar 9691 tskuni 9795 fzen2 12960 hashdvds 15680 unbenlem 15812 unben 15813 4sqlem11 15859 pmtrfconj 18084 psgnunilem1 18111 odinf 18178 dfod2 18179 sylow2blem1 18233 sylow2 18239 frlmisfrlm 20387 hmphindis 21800 dyadmbl 23566 padct 29804 f1ocnt 29866 volmeas 30601 sconnpi1 31526 lzenom 37833 fiphp3d 37883 frlmpwfi 38168 isnumbasgrplem3 38175 fiuneneq 38275 rp-isfinite5 38363 enrelmap 38791 enrelmapr 38792 enmappw 38793 uspgrymrelen 42269 |
Copyright terms: Public domain | W3C validator |