MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymb Structured version   Visualization version   GIF version

Theorem ensymb 8120
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb (𝐴𝐵𝐵𝐴)

Proof of Theorem ensymb
StepHypRef Expression
1 ener 8119 . . . 4 ≈ Er V
21a1i 11 . . 3 (⊤ → ≈ Er V)
32ersymb 7876 . 2 (⊤ → (𝐴𝐵𝐵𝐴))
43trud 1606 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wtru 1597  Vcvv 3304   class class class wbr 4760   Er wer 7859  cen 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-er 7862  df-en 8073
This theorem is referenced by:  ensym  8121  0sdomg  8205  snnen2o  8265  cantnfp1lem2  8689  cantnflem1  8699  iscard2  8915  dffin1-5  9323  pmtrsn  18060  volmeas  30524  isnumbasgrplem1  38090  rp-isfinite6  38283
  Copyright terms: Public domain W3C validator