![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensym | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensym | ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8045 | . 2 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) | |
2 | 1 | biimpi 206 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 4685 ≈ cen 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-er 7787 df-en 7998 |
This theorem is referenced by: ensymi 8047 ensymd 8048 sbthb 8122 domnsym 8127 sdomdomtr 8134 domsdomtr 8136 enen1 8141 enen2 8142 domen1 8143 domen2 8144 sdomen1 8145 sdomen2 8146 domtriord 8147 xpen 8164 pwen 8174 nneneq 8184 php2 8186 php3 8187 ominf 8213 fineqvlem 8215 en1eqsn 8231 dif1en 8234 enp1i 8236 findcard3 8244 isfinite2 8259 nnsdomg 8260 domunfican 8274 infcntss 8275 fiint 8278 wdomen1 8522 wdomen2 8523 unxpwdom2 8534 karden 8796 finnum 8812 carden2b 8831 fidomtri2 8858 cardmin2 8862 pr2ne 8866 en2eleq 8869 infxpenlem 8874 acnen 8914 acnen2 8916 infpwfien 8923 alephordi 8935 alephinit 8956 dfac12lem2 9004 dfac12r 9006 uncdadom 9031 cdacomen 9041 cdainf 9052 pwsdompw 9064 infmap2 9078 ackbij1b 9099 cflim2 9123 fin4en1 9169 domfin4 9171 fin23lem25 9184 fin23lem23 9186 enfin1ai 9244 fin67 9255 isfin7-2 9256 fin1a2lem11 9270 axcc2lem 9296 axcclem 9317 numthcor 9354 carden 9411 sdomsdomcard 9420 canthnum 9509 canthwe 9511 canthp1lem2 9513 canthp1 9514 pwxpndom2 9525 gchcdaidm 9528 gchxpidm 9529 gchpwdom 9530 inawinalem 9549 grudomon 9677 isfinite4 13191 hashfn 13202 ramub2 15765 dfod2 18027 sylow2blem1 18081 znhash 19955 hauspwdom 21352 rectbntr0 22682 ovolctb 23304 dyadmbl 23414 eupthfi 27183 derangen 31280 finminlem 32437 phpreu 33523 pellexlem4 37713 pellexlem5 37714 pellex 37716 |
Copyright terms: Public domain | W3C validator |