![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enssdom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
enssdom | ⊢ ≈ ⊆ ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8114 | . 2 ⊢ Rel ≈ | |
2 | f1of1 6285 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
3 | 2 | eximi 1899 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
4 | opabid 5120 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
5 | opabid 5120 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
6 | 3, 4, 5 | 3imtr4i 281 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
7 | df-en 8110 | . . . 4 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
8 | 7 | eleq2i 2819 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
9 | df-dom 8111 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
10 | 9 | eleq2i 2819 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≼ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
11 | 6, 8, 10 | 3imtr4i 281 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ → 〈𝑥, 𝑦〉 ∈ ≼ ) |
12 | 1, 11 | relssi 5356 | 1 ⊢ ≈ ⊆ ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1841 ∈ wcel 2127 ⊆ wss 3703 〈cop 4315 {copab 4852 –1-1→wf1 6034 –1-1-onto→wf1o 6036 ≈ cen 8106 ≼ cdom 8107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-rab 3047 df-v 3330 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-opab 4853 df-xp 5260 df-rel 5261 df-f1o 6044 df-en 8110 df-dom 8111 |
This theorem is referenced by: dfdom2 8135 endom 8136 |
Copyright terms: Public domain | W3C validator |