![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1g | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 23-Apr-2004.) |
Ref | Expression |
---|---|
ensn1g | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4220 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | breq1d 4695 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥} ≈ 1𝑜 ↔ {𝐴} ≈ 1𝑜)) |
3 | vex 3234 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | ensn1 8061 | . 2 ⊢ {𝑥} ≈ 1𝑜 |
5 | 2, 4 | vtoclg 3297 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {csn 4210 class class class wbr 4685 1𝑜c1o 7598 ≈ cen 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-suc 5767 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-1o 7605 df-en 7998 |
This theorem is referenced by: enpr1g 8063 en1b 8065 en2sn 8078 snfi 8079 snnen2o 8190 sucxpdom 8210 en1eqsn 8231 en1eqsnbi 8232 pr2nelem 8865 prdom2 8867 cda1en 9035 snct 29619 rngoueqz 33869 |
Copyright terms: Public domain | W3C validator |