MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Structured version   Visualization version   GIF version

Theorem enrex 9885
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex ~R ∈ V

Proof of Theorem enrex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 9805 . . . 4 P ∈ V
21, 1xpex 6959 . . 3 (P × P) ∈ V
32, 2xpex 6959 . 2 ((P × P) × (P × P)) ∈ V
4 df-enr 9874 . . 3 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
5 opabssxp 5191 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P))
64, 5eqsstri 3633 . 2 ~R ⊆ ((P × P) × (P × P))
73, 6ssexi 4801 1 ~R ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1482  wex 1703  wcel 1989  Vcvv 3198  cop 4181  {copab 4710   × cxp 5110  (class class class)co 6647  Pcnp 9678   +P cpp 9680   ~R cer 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-om 7063  df-ni 9691  df-nq 9731  df-np 9800  df-enr 9874
This theorem is referenced by:  addsrpr  9893  mulsrpr  9894  ltsrpr  9895  0r  9898  1sr  9899  m1r  9900  addclsr  9901  mulclsr  9902  recexsrlem  9921
  Copyright terms: Public domain W3C validator