![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enp1ilem | Structured version Visualization version GIF version |
Description: Lemma for uses of enp1i 8362. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
enp1ilem.1 | ⊢ 𝑇 = ({𝑥} ∪ 𝑆) |
Ref | Expression |
---|---|
enp1ilem | ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 3903 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥})) | |
2 | undif1 4187 | . . 3 ⊢ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥}) | |
3 | uncom 3900 | . . . 4 ⊢ (𝑆 ∪ {𝑥}) = ({𝑥} ∪ 𝑆) | |
4 | enp1ilem.1 | . . . 4 ⊢ 𝑇 = ({𝑥} ∪ 𝑆) | |
5 | 3, 4 | eqtr4i 2785 | . . 3 ⊢ (𝑆 ∪ {𝑥}) = 𝑇 |
6 | 1, 2, 5 | 3eqtr3g 2817 | . 2 ⊢ ((𝐴 ∖ {𝑥}) = 𝑆 → (𝐴 ∪ {𝑥}) = 𝑇) |
7 | snssi 4484 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
8 | ssequn2 3929 | . . . 4 ⊢ ({𝑥} ⊆ 𝐴 ↔ (𝐴 ∪ {𝑥}) = 𝐴) | |
9 | 7, 8 | sylib 208 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ∪ {𝑥}) = 𝐴) |
10 | 9 | eqeq1d 2762 | . 2 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∪ {𝑥}) = 𝑇 ↔ 𝐴 = 𝑇)) |
11 | 6, 10 | syl5ib 234 | 1 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∪ cun 3713 ⊆ wss 3715 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-sn 4322 |
This theorem is referenced by: en2 8363 en3 8364 en4 8365 |
Copyright terms: Public domain | W3C validator |