MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   GIF version

Theorem enfin1ai 9244
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))

Proof of Theorem enfin1ai
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8046 . . 3 (𝐴𝐵𝐵𝐴)
2 bren 8006 . . 3 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
31, 2sylib 208 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐵1-1-onto𝐴)
4 elpwi 4201 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
5 simplr 807 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐴 ∈ FinIa)
6 imassrn 5512 . . . . . . . . . 10 (𝑓𝑥) ⊆ ran 𝑓
7 f1of 6175 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
87ad2antrr 762 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵𝐴)
9 frn 6091 . . . . . . . . . . 11 (𝑓:𝐵𝐴 → ran 𝑓𝐴)
108, 9syl 17 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ran 𝑓𝐴)
116, 10syl5ss 3647 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ⊆ 𝐴)
12 fin1ai 9153 . . . . . . . . 9 ((𝐴 ∈ FinIa ∧ (𝑓𝑥) ⊆ 𝐴) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
135, 11, 12syl2anc 694 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
14 f1of1 6174 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
1514ad2antrr 762 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵1-1𝐴)
16 simpr 476 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥𝐵)
17 vex 3234 . . . . . . . . . . . 12 𝑥 ∈ V
1817a1i 11 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥 ∈ V)
19 f1imaeng 8057 . . . . . . . . . . 11 ((𝑓:𝐵1-1𝐴𝑥𝐵𝑥 ∈ V) → (𝑓𝑥) ≈ 𝑥)
2015, 16, 18, 19syl3anc 1366 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
21 enfi 8217 . . . . . . . . . 10 ((𝑓𝑥) ≈ 𝑥 → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
2220, 21syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
23 df-f1 5931 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ Fun 𝑓))
2423simprbi 479 . . . . . . . . . . . . 13 (𝑓:𝐵1-1𝐴 → Fun 𝑓)
25 imadif 6011 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
2615, 24, 253syl 18 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
27 f1ofo 6182 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
28 foima 6158 . . . . . . . . . . . . . . 15 (𝑓:𝐵onto𝐴 → (𝑓𝐵) = 𝐴)
2927, 28syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
3029ad2antrr 762 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝐵) = 𝐴)
3130difeq1d 3760 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝐵) ∖ (𝑓𝑥)) = (𝐴 ∖ (𝑓𝑥)))
3226, 31eqtrd 2685 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = (𝐴 ∖ (𝑓𝑥)))
33 difssd 3771 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ⊆ 𝐵)
34 vex 3234 . . . . . . . . . . . . . . 15 𝑓 ∈ V
357adantr 480 . . . . . . . . . . . . . . 15 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝑓:𝐵𝐴)
36 dmfex 7166 . . . . . . . . . . . . . . 15 ((𝑓 ∈ V ∧ 𝑓:𝐵𝐴) → 𝐵 ∈ V)
3734, 35, 36sylancr 696 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ V)
3837adantr 480 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐵 ∈ V)
39 difexg 4841 . . . . . . . . . . . . 13 (𝐵 ∈ V → (𝐵𝑥) ∈ V)
4038, 39syl 17 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ∈ V)
41 f1imaeng 8057 . . . . . . . . . . . 12 ((𝑓:𝐵1-1𝐴 ∧ (𝐵𝑥) ⊆ 𝐵 ∧ (𝐵𝑥) ∈ V) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4215, 33, 40, 41syl3anc 1366 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4332, 42eqbrtrrd 4709 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥))
44 enfi 8217 . . . . . . . . . 10 ((𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4543, 44syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4622, 45orbi12d 746 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4713, 46mpbid 222 . . . . . . 7 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
484, 47sylan2 490 . . . . . 6 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
4948ralrimiva 2995 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
50 isfin1a 9152 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5137, 50syl 17 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5249, 51mpbird 247 . . . 4 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ FinIa)
5352ex 449 . . 3 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
5453exlimiv 1898 . 2 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
553, 54syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  wss 3607  𝒫 cpw 4191   class class class wbr 4685  ccnv 5142  ran crn 5144  cima 5146  Fun wfun 5920  wf 5922  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cen 7994  Fincfn 7997  FinIacfin1a 9138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-fin 8001  df-fin1a 9145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator