![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endom | Structured version Visualization version GIF version |
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enssdom 8022 | . 2 ⊢ ≈ ⊆ ≼ | |
2 | 1 | ssbri 4730 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 4685 ≈ cen 7994 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-f1o 5933 df-en 7998 df-dom 7999 |
This theorem is referenced by: bren2 8028 domrefg 8032 endomtr 8055 domentr 8056 domunsncan 8101 sbthb 8122 sdomentr 8135 ensdomtr 8137 domtriord 8147 domunsn 8151 xpen 8164 unxpdom2 8209 sucxpdom 8210 wdomen1 8522 wdomen2 8523 fidomtri2 8858 prdom2 8867 acnen 8914 acnen2 8916 alephdom 8942 alephinit 8956 uncdadom 9031 pwcdadom 9076 fin1a2lem11 9270 hsmexlem1 9286 gchdomtri 9489 gchcdaidm 9528 gchxpidm 9529 gchpwdom 9530 gchhar 9539 gruina 9678 nnct 12820 odinf 18026 hauspwdom 21352 ufildom1 21777 iscmet3 23137 ovolctb2 23306 mbfaddlem 23472 heiborlem3 33742 zct 39543 qct 39891 caratheodory 41063 |
Copyright terms: Public domain | W3C validator |