MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en4 Structured version   Visualization version   GIF version

Theorem en4 8363
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en4 (𝐴 ≈ 4𝑜 → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐴

Proof of Theorem en4
StepHypRef Expression
1 3onn 7890 . 2 3𝑜 ∈ ω
2 df-4o 7732 . 2 4𝑜 = suc 3𝑜
3 en3 8362 . 2 ((𝐴 ∖ {𝑥}) ≈ 3𝑜 → ∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤})
4 qdassr 4433 . . . . 5 ({𝑥, 𝑦} ∪ {𝑧, 𝑤}) = ({𝑥} ∪ {𝑦, 𝑧, 𝑤})
54enp1ilem 8359 . . . 4 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
65eximdv 1995 . . 3 (𝑥𝐴 → (∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
762eximdv 1997 . 2 (𝑥𝐴 → (∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
81, 2, 3, 7enp1i 8360 1 (𝐴 ≈ 4𝑜 → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wex 1853  wcel 2139  cdif 3712  cun 3713  {csn 4321  {cpr 4323  {ctp 4325   class class class wbr 4804  3𝑜c3o 7724  4𝑜c4o 7725  cen 8118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-1o 7729  df-2o 7730  df-3o 7731  df-4o 7732  df-er 7911  df-en 8122  df-fin 8125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator