MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Visualization version   GIF version

Theorem en2top 20837
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))

Proof of Theorem en2top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 ≈ 2𝑜)
2 toponss 20779 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
32ad2ant2rl 800 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥𝑋)
4 simprl 809 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑋 = ∅)
5 sseq0 4008 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑋 = ∅) → 𝑥 = ∅)
63, 4, 5syl2anc 694 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 = ∅)
7 velsn 4226 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
86, 7sylibr 224 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 ∈ {∅})
98expr 642 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝑥𝐽𝑥 ∈ {∅}))
109ssrdv 3642 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ⊆ {∅})
11 topontop 20766 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
12 0opn 20757 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ∅ ∈ 𝐽)
1311, 12syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
1413ad2antrr 762 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ∅ ∈ 𝐽)
1514snssd 4372 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → {∅} ⊆ 𝐽)
1610, 15eqssd 3653 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 = {∅})
17 0ex 4823 . . . . . . . . . . . . 13 ∅ ∈ V
1817ensn1 8061 . . . . . . . . . . . 12 {∅} ≈ 1𝑜
1916, 18syl6eqbr 4724 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≈ 1𝑜)
2019olcd 407 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈ 1𝑜))
21 sdom2en01 9162 . . . . . . . . . 10 (𝐽 ≺ 2𝑜 ↔ (𝐽 = ∅ ∨ 𝐽 ≈ 1𝑜))
2220, 21sylibr 224 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≺ 2𝑜)
23 sdomnen 8026 . . . . . . . . 9 (𝐽 ≺ 2𝑜 → ¬ 𝐽 ≈ 2𝑜)
2422, 23syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈ 2𝑜)
2524ex 449 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝑋 = ∅ → ¬ 𝐽 ≈ 2𝑜))
2625necon2ad 2838 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝐽 ≈ 2𝑜𝑋 ≠ ∅))
271, 26mpd 15 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋 ≠ ∅)
2827necomd 2878 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → ∅ ≠ 𝑋)
2913adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → ∅ ∈ 𝐽)
30 toponmax 20778 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3130adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋𝐽)
32 en2eqpr 8868 . . . . 5 ((𝐽 ≈ 2𝑜 ∧ ∅ ∈ 𝐽𝑋𝐽) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
331, 29, 31, 32syl3anc 1366 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
3428, 33mpd 15 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 = {∅, 𝑋})
3534, 27jca 553 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
36 simprl 809 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋})
3717a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ∈ V)
3830adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋𝐽)
39 simprr 811 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
4039necomd 2878 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋)
41 pr2nelem 8865 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈ 2𝑜)
4237, 38, 40, 41syl3anc 1366 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈ 2𝑜)
4336, 42eqbrtrd 4707 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2𝑜)
4435, 43impbida 895 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  wss 3607  c0 3948  {csn 4210  {cpr 4212   class class class wbr 4685  cfv 5926  1𝑜c1o 7598  2𝑜c2o 7599  cen 7994  csdm 7996  Topctop 20746  TopOnctopon 20763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-top 20747  df-topon 20764
This theorem is referenced by:  hmphindis  21648
  Copyright terms: Public domain W3C validator