![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2sn | Structured version Visualization version GIF version |
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
en2sn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1g 8186 | . 2 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1𝑜) | |
2 | ensn1g 8186 | . . 3 ⊢ (𝐵 ∈ 𝐷 → {𝐵} ≈ 1𝑜) | |
3 | 2 | ensymd 8172 | . 2 ⊢ (𝐵 ∈ 𝐷 → 1𝑜 ≈ {𝐵}) |
4 | entr 8173 | . 2 ⊢ (({𝐴} ≈ 1𝑜 ∧ 1𝑜 ≈ {𝐵}) → {𝐴} ≈ {𝐵}) | |
5 | 1, 3, 4 | syl2an 495 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴} ≈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 {csn 4321 class class class wbr 4804 1𝑜c1o 7722 ≈ cen 8118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-suc 5890 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-1o 7729 df-er 7911 df-en 8122 |
This theorem is referenced by: difsnen 8207 domunsncan 8225 domunsn 8275 limensuci 8301 infensuc 8303 sucdom2 8321 dif1en 8358 dif1card 9023 fin23lem26 9339 unsnen 9567 canthp1lem1 9666 fzennn 12961 hashsng 13351 mreexexlem4d 16509 |
Copyright terms: Public domain | W3C validator |