MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Structured version   Visualization version   GIF version

Theorem en2lp 8548
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp ¬ (𝐴𝐵𝐵𝐴)

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 8547 . . 3 E Fr V
2 efrn2lp 5125 . . 3 (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴𝐵𝐵𝐴))
31, 2mpan 706 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
4 elex 3243 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 elex 3243 . . . 4 (𝐵𝐴𝐵 ∈ V)
64, 5anim12i 589 . . 3 ((𝐴𝐵𝐵𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76con3i 150 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
83, 7pm2.61i 176 1 ¬ (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383  wcel 2030  Vcvv 3231   E cep 5057   Fr wfr 5099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-reg 8538
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-eprel 5058  df-fr 5102
This theorem is referenced by:  preleq  8552  suc11reg  8554  axunndlem1  9455  axacndlem5  9471  tratrb  39063  tratrbVD  39411
  Copyright terms: Public domain W3C validator