![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2eqpr | Structured version Visualization version GIF version |
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
en2eqpr | ⊢ ((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 7891 | . . . . . 6 ⊢ 2𝑜 ∈ ω | |
2 | nnfi 8320 | . . . . . 6 ⊢ (2𝑜 ∈ ω → 2𝑜 ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2𝑜 ∈ Fin |
4 | simpl1 1228 | . . . . 5 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ≈ 2𝑜) | |
5 | enfii 8344 | . . . . 5 ⊢ ((2𝑜 ∈ Fin ∧ 𝐶 ≈ 2𝑜) → 𝐶 ∈ Fin) | |
6 | 3, 4, 5 | sylancr 698 | . . . 4 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ Fin) |
7 | simpl2 1230 | . . . . 5 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐶) | |
8 | simpl3 1232 | . . . . 5 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐶) | |
9 | prssi 4498 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
10 | 7, 8, 9 | syl2anc 696 | . . . 4 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ⊆ 𝐶) |
11 | pr2nelem 9037 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2𝑜) | |
12 | 11 | 3expa 1112 | . . . . . 6 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2𝑜) |
13 | 12 | 3adantl1 1172 | . . . . 5 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2𝑜) |
14 | 4 | ensymd 8174 | . . . . 5 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 2𝑜 ≈ 𝐶) |
15 | entr 8175 | . . . . 5 ⊢ (({𝐴, 𝐵} ≈ 2𝑜 ∧ 2𝑜 ≈ 𝐶) → {𝐴, 𝐵} ≈ 𝐶) | |
16 | 13, 14, 15 | syl2anc 696 | . . . 4 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 𝐶) |
17 | fisseneq 8338 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶) | |
18 | 6, 10, 16, 17 | syl3anc 1477 | . . 3 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} = 𝐶) |
19 | 18 | eqcomd 2766 | . 2 ⊢ (((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ 𝐴 ≠ 𝐵) → 𝐶 = {𝐴, 𝐵}) |
20 | 19 | ex 449 | 1 ⊢ ((𝐶 ≈ 2𝑜 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ⊆ wss 3715 {cpr 4323 class class class wbr 4804 ωcom 7231 2𝑜c2o 7724 ≈ cen 8120 Fincfn 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-1o 7730 df-2o 7731 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 |
This theorem is referenced by: isprm2lem 15616 en2top 21011 |
Copyright terms: Public domain | W3C validator |