![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1uniel | Structured version Visualization version GIF version |
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
en1uniel | ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8126 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelexi 5315 | . . 3 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 ∈ V) |
3 | uniexg 7120 | . . 3 ⊢ (𝑆 ∈ V → ∪ 𝑆 ∈ V) | |
4 | snidg 4351 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ {∪ 𝑆}) |
6 | en1b 8189 | . . 3 ⊢ (𝑆 ≈ 1𝑜 ↔ 𝑆 = {∪ 𝑆}) | |
7 | 6 | biimpi 206 | . 2 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 = {∪ 𝑆}) |
8 | 5, 7 | eleqtrrd 2842 | 1 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 ∪ cuni 4588 class class class wbr 4804 1𝑜c1o 7722 ≈ cen 8118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-1o 7729 df-en 8122 |
This theorem is referenced by: en2eleq 9021 en2other2 9022 pmtrf 18075 pmtrmvd 18076 pmtrfinv 18081 frgpcyg 20124 |
Copyright terms: Public domain | W3C validator |