![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1b | Structured version Visualization version GIF version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
en1b | ⊢ (𝐴 ≈ 1𝑜 ↔ 𝐴 = {∪ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 8064 | . . 3 ⊢ (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥}) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
3 | unieq 4476 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | vex 3234 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | unisn 4483 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 |
6 | 3, 5 | syl6eq 2701 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
7 | 6 | sneqd 4222 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
8 | 2, 7 | eqtr4d 2688 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
9 | 8 | exlimiv 1898 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
10 | 1, 9 | sylbi 207 | . 2 ⊢ (𝐴 ≈ 1𝑜 → 𝐴 = {∪ 𝐴}) |
11 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
12 | snex 4938 | . . . . . 6 ⊢ {∪ 𝐴} ∈ V | |
13 | 11, 12 | syl6eqel 2738 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ∈ V) |
14 | uniexg 6997 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
16 | ensn1g 8062 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1𝑜) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1𝑜) |
18 | 11, 17 | eqbrtrd 4707 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1𝑜) |
19 | 10, 18 | impbii 199 | 1 ⊢ (𝐴 ≈ 1𝑜 ↔ 𝐴 = {∪ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 {csn 4210 ∪ cuni 4468 class class class wbr 4685 1𝑜c1o 7598 ≈ cen 7994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-1o 7605 df-en 7998 |
This theorem is referenced by: en1uniel 8069 sylow2alem2 18079 sylow2a 18080 frgpcyg 19970 ptcmplem3 21905 cnextfvval 21916 cnextcn 21918 minveclem4a 23247 isppw 24885 xrge0tsmsbi 29914 |
Copyright terms: Public domain | W3C validator |