Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem2 Structured version   Visualization version   GIF version

Theorem emcllem2 24944
 Description: Lemma for emcl 24950. 𝐹 is increasing, and 𝐺 is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
Assertion
Ref Expression
emcllem2 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
Distinct variable group:   𝑚,𝑛,𝑁
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)

Proof of Theorem emcllem2
StepHypRef Expression
1 peano2nn 11238 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
21nnrecred 11272 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ)
31nnrpd 12073 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
43relogcld 24590 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℝ)
5 nnrp 12045 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
65relogcld 24590 . . . . . . 7 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℝ)
74, 6resubcld 10664 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) − (log‘𝑁)) ∈ ℝ)
8 fzfid 12980 . . . . . . 7 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9 elfznn 12577 . . . . . . . . 9 (𝑚 ∈ (1...𝑁) → 𝑚 ∈ ℕ)
109adantl 467 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
1110nnrecred 11272 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℝ)
128, 11fsumrecl 14673 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℝ)
133rpreccld 12085 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ∈ ℝ+)
1413rpge0d 12079 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (1 / (𝑁 + 1)))
15 1div1e1 10923 . . . . . . . . . . . 12 (1 / 1) = 1
16 1re 10245 . . . . . . . . . . . . . 14 1 ∈ ℝ
17 ltaddrp 12070 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 < (1 + 𝑁))
1816, 5, 17sylancr 575 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 < (1 + 𝑁))
19 ax-1cn 10200 . . . . . . . . . . . . . 14 1 ∈ ℂ
20 nncn 11234 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21 addcom 10428 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + 𝑁) = (𝑁 + 1))
2219, 20, 21sylancr 575 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (1 + 𝑁) = (𝑁 + 1))
2318, 22breqtrd 4813 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (𝑁 + 1))
2415, 23syl5eqbr 4822 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 / 1) < (𝑁 + 1))
251nnred 11241 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
261nngt0d 11270 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
27 0lt1 10756 . . . . . . . . . . . . 13 0 < 1
28 ltrec1 11116 . . . . . . . . . . . . 13 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1))) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
2916, 27, 28mpanl12 682 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ ℝ ∧ 0 < (𝑁 + 1)) → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3025, 26, 29syl2anc 573 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / 1) < (𝑁 + 1) ↔ (1 / (𝑁 + 1)) < 1))
3124, 30mpbid 222 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) < 1)
322, 14, 31eflegeo 15057 . . . . . . . . 9 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (1 / (1 − (1 / (𝑁 + 1)))))
3325recnd 10274 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
34 nnne0 11259 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
351nnne0d 11271 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
3620, 33, 34, 35recdivd 11024 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (𝑁 / (𝑁 + 1))) = ((𝑁 + 1) / 𝑁))
37 1cnd 10262 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3833, 37, 33, 35divsubdird 11046 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))))
39 pncan 10493 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4020, 19, 39sylancl 574 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
4140oveq1d 6811 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) / (𝑁 + 1)) = (𝑁 / (𝑁 + 1)))
4233, 35dividd 11005 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 1) / (𝑁 + 1)) = 1)
4342oveq1d 6811 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁 + 1) / (𝑁 + 1)) − (1 / (𝑁 + 1))) = (1 − (1 / (𝑁 + 1))))
4438, 41, 433eqtr3rd 2814 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (1 − (1 / (𝑁 + 1))) = (𝑁 / (𝑁 + 1)))
4544oveq2d 6812 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (1 / (𝑁 / (𝑁 + 1))))
463, 5rpdivcld 12092 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
4746reeflogd 24591 . . . . . . . . . 10 (𝑁 ∈ ℕ → (exp‘(log‘((𝑁 + 1) / 𝑁))) = ((𝑁 + 1) / 𝑁))
4836, 45, 473eqtr4d 2815 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / (1 − (1 / (𝑁 + 1)))) = (exp‘(log‘((𝑁 + 1) / 𝑁))))
4932, 48breqtrd 4813 . . . . . . . 8 (𝑁 ∈ ℕ → (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁))))
503, 5relogdivd 24593 . . . . . . . . . 10 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) = ((log‘(𝑁 + 1)) − (log‘𝑁)))
5150, 7eqeltrd 2850 . . . . . . . . 9 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ)
52 efle 15054 . . . . . . . . 9 (((1 / (𝑁 + 1)) ∈ ℝ ∧ (log‘((𝑁 + 1) / 𝑁)) ∈ ℝ) → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
532, 51, 52syl2anc 573 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)) ↔ (exp‘(1 / (𝑁 + 1))) ≤ (exp‘(log‘((𝑁 + 1) / 𝑁)))))
5449, 53mpbird 247 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ (log‘((𝑁 + 1) / 𝑁)))
5554, 50breqtrd 4813 . . . . . 6 (𝑁 ∈ ℕ → (1 / (𝑁 + 1)) ≤ ((log‘(𝑁 + 1)) − (log‘𝑁)))
562, 7, 12, 55leadd2dd 10848 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
57 id 22 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
58 nnuz 11930 . . . . . . 7 ℕ = (ℤ‘1)
5957, 58syl6eleq 2860 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
60 elfznn 12577 . . . . . . . . 9 (𝑚 ∈ (1...(𝑁 + 1)) → 𝑚 ∈ ℕ)
6160adantl 467 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → 𝑚 ∈ ℕ)
6261nnrecred 11272 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℝ)
6362recnd 10274 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑚 ∈ (1...(𝑁 + 1))) → (1 / 𝑚) ∈ ℂ)
64 oveq2 6804 . . . . . 6 (𝑚 = (𝑁 + 1) → (1 / 𝑚) = (1 / (𝑁 + 1)))
6559, 63, 64fsump1 14695 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
664recnd 10274 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝑁 + 1)) ∈ ℂ)
6712recnd 10274 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) ∈ ℂ)
686recnd 10274 . . . . . 6 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
6966, 67, 68addsub12d 10621 . . . . 5 (𝑁 ∈ ℕ → ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘(𝑁 + 1)) − (log‘𝑁))))
7056, 65, 693brtr4d 4819 . . . 4 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))))
71 fzfid 12980 . . . . . 6 (𝑁 ∈ ℕ → (1...(𝑁 + 1)) ∈ Fin)
7271, 62fsumrecl 14673 . . . . 5 (𝑁 ∈ ℕ → Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ)
7312, 6resubcld 10664 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ ℝ)
7472, 4, 73lesubadd2d 10832 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ↔ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ≤ ((log‘(𝑁 + 1)) + (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))))
7570, 74mpbird 247 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
76 oveq2 6804 . . . . . . 7 (𝑛 = (𝑁 + 1) → (1...𝑛) = (1...(𝑁 + 1)))
7776sumeq1d 14639 . . . . . 6 (𝑛 = (𝑁 + 1) → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
78 fveq2 6333 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘𝑛) = (log‘(𝑁 + 1)))
7977, 78oveq12d 6814 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
80 emcl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
81 ovex 6827 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
8279, 80, 81fvmpt 6426 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
831, 82syl 17 . . 3 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘(𝑁 + 1))))
84 oveq2 6804 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
8584sumeq1d 14639 . . . . 5 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
86 fveq2 6333 . . . . 5 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
8785, 86oveq12d 6814 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
88 ovex 6827 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ V
8987, 80, 88fvmpt 6426 . . 3 (𝑁 ∈ ℕ → (𝐹𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
9075, 83, 893brtr4d 4819 . 2 (𝑁 ∈ ℕ → (𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁))
91 peano2nn 11238 . . . . . . . . . 10 ((𝑁 + 1) ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
921, 91syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
9392nnrpd 12073 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ+)
9493relogcld 24590 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℝ)
9594, 4resubcld 10664 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ∈ ℝ)
96 logdifbnd 24941 . . . . . . 7 ((𝑁 + 1) ∈ ℝ+ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
973, 96syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1))) ≤ (1 / (𝑁 + 1)))
9895, 2, 12, 97leadd2dd 10848 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))) ≤ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + (1 / (𝑁 + 1))))
9994recnd 10274 . . . . . 6 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) + 1)) ∈ ℂ)
10067, 66, 99subadd23d 10620 . . . . 5 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) + ((log‘((𝑁 + 1) + 1)) − (log‘(𝑁 + 1)))))
10198, 100, 653brtr4d 4819 . . . 4 (𝑁 ∈ ℕ → ((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚))
10212, 4resubcld 10664 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ)
103 leaddsub 10710 . . . . 5 (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ℝ ∧ (log‘((𝑁 + 1) + 1)) ∈ ℝ ∧ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ∈ ℝ) → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
104102, 94, 72, 103syl3anc 1476 . . . 4 (𝑁 ∈ ℕ → (((Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) + (log‘((𝑁 + 1) + 1))) ≤ Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1)))))
105101, 104mpbid 222 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ≤ (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
106 fvoveq1 6819 . . . . 5 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
10785, 106oveq12d 6814 . . . 4 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
108 emcl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
109 ovex 6827 . . . 4 𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ V
110107, 108, 109fvmpt 6426 . . 3 (𝑁 ∈ ℕ → (𝐺𝑁) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
111 fvoveq1 6819 . . . . . 6 (𝑛 = (𝑁 + 1) → (log‘(𝑛 + 1)) = (log‘((𝑁 + 1) + 1)))
11277, 111oveq12d 6814 . . . . 5 (𝑛 = (𝑁 + 1) → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
113 ovex 6827 . . . . 5 𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))) ∈ V
114112, 108, 113fvmpt 6426 . . . 4 ((𝑁 + 1) ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
1151, 114syl 17 . . 3 (𝑁 ∈ ℕ → (𝐺‘(𝑁 + 1)) = (Σ𝑚 ∈ (1...(𝑁 + 1))(1 / 𝑚) − (log‘((𝑁 + 1) + 1))))
116105, 110, 1153brtr4d 4819 . 2 (𝑁 ∈ ℕ → (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1)))
11790, 116jca 501 1 (𝑁 ∈ ℕ → ((𝐹‘(𝑁 + 1)) ≤ (𝐹𝑁) ∧ (𝐺𝑁) ≤ (𝐺‘(𝑁 + 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   class class class wbr 4787   ↦ cmpt 4864  ‘cfv 6030  (class class class)co 6796  ℂcc 10140  ℝcr 10141  0cc0 10142  1c1 10143   + caddc 10145   < clt 10280   ≤ cle 10281   − cmin 10472   / cdiv 10890  ℕcn 11226  ℤ≥cuz 11893  ℝ+crp 12035  ...cfz 12533  Σcsu 14624  expce 14998  logclog 24522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524 This theorem is referenced by:  emcllem6  24948  emcllem7  24949
 Copyright terms: Public domain W3C validator