MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  embedsetcestrclem Structured version   Visualization version   GIF version

Theorem embedsetcestrclem 16844
Description: Lemma for embedsetcestrc 16854. (Contributed by AV, 31-Mar-2020.)
Hypotheses
Ref Expression
funcsetcestrc.s 𝑆 = (SetCat‘𝑈)
funcsetcestrc.c 𝐶 = (Base‘𝑆)
funcsetcestrc.f (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
funcsetcestrc.u (𝜑𝑈 ∈ WUni)
funcsetcestrc.o (𝜑 → ω ∈ 𝑈)
funcsetcestrclem3.e 𝐸 = (ExtStrCat‘𝑈)
funcsetcestrclem3.b 𝐵 = (Base‘𝐸)
Assertion
Ref Expression
embedsetcestrclem (𝜑𝐹:𝐶1-1𝐵)
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem embedsetcestrclem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcsetcestrc.s . . 3 𝑆 = (SetCat‘𝑈)
2 funcsetcestrc.c . . 3 𝐶 = (Base‘𝑆)
3 funcsetcestrc.f . . 3 (𝜑𝐹 = (𝑥𝐶 ↦ {⟨(Base‘ndx), 𝑥⟩}))
4 funcsetcestrc.u . . 3 (𝜑𝑈 ∈ WUni)
5 funcsetcestrc.o . . 3 (𝜑 → ω ∈ 𝑈)
6 funcsetcestrclem3.e . . 3 𝐸 = (ExtStrCat‘𝑈)
7 funcsetcestrclem3.b . . 3 𝐵 = (Base‘𝐸)
81, 2, 3, 4, 5, 6, 7funcsetcestrclem3 16843 . 2 (𝜑𝐹:𝐶𝐵)
91, 2, 3funcsetcestrclem1 16841 . . . . . 6 ((𝜑𝑦𝐶) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
109adantrr 753 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑦) = {⟨(Base‘ndx), 𝑦⟩})
111, 2, 3funcsetcestrclem1 16841 . . . . . 6 ((𝜑𝑧𝐶) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1211adantrl 752 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (𝐹𝑧) = {⟨(Base‘ndx), 𝑧⟩})
1310, 12eqeq12d 2666 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) ↔ {⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩}))
14 opex 4962 . . . . . 6 ⟨(Base‘ndx), 𝑦⟩ ∈ V
15 sneqbg 4406 . . . . . 6 (⟨(Base‘ndx), 𝑦⟩ ∈ V → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
1614, 15mp1i 13 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} ↔ ⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩))
17 fvexd 6241 . . . . . . 7 (𝜑 → (Base‘ndx) ∈ V)
18 simpl 472 . . . . . . 7 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
19 opthg 4975 . . . . . . 7 (((Base‘ndx) ∈ V ∧ 𝑦𝐶) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
2017, 18, 19syl2an 493 . . . . . 6 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ ↔ ((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧)))
21 simpr 476 . . . . . 6 (((Base‘ndx) = (Base‘ndx) ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧)
2220, 21syl6bi 243 . . . . 5 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → (⟨(Base‘ndx), 𝑦⟩ = ⟨(Base‘ndx), 𝑧⟩ → 𝑦 = 𝑧))
2316, 22sylbid 230 . . . 4 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ({⟨(Base‘ndx), 𝑦⟩} = {⟨(Base‘ndx), 𝑧⟩} → 𝑦 = 𝑧))
2413, 23sylbid 230 . . 3 ((𝜑 ∧ (𝑦𝐶𝑧𝐶)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
2524ralrimivva 3000 . 2 (𝜑 → ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
26 dff13 6552 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ ∀𝑦𝐶𝑧𝐶 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
278, 25, 26sylanbrc 699 1 (𝜑𝐹:𝐶1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  {csn 4210  cop 4216  cmpt 4762  wf 5922  1-1wf1 5923  cfv 5926  ωcom 7107  WUnicwun 9560  ndxcnx 15901  Basecbs 15904  SetCatcsetc 16772  ExtStrCatcestrc 16809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-wun 9562  df-ni 9732  df-pli 9733  df-mi 9734  df-lti 9735  df-plpq 9768  df-mpq 9769  df-ltpq 9770  df-enq 9771  df-nq 9772  df-erq 9773  df-plq 9774  df-mq 9775  df-1nq 9776  df-rq 9777  df-ltnq 9778  df-np 9841  df-plp 9843  df-ltp 9845  df-enr 9915  df-nr 9916  df-c 9980  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-hom 16013  df-cco 16014  df-setc 16773  df-estrc 16810
This theorem is referenced by:  embedsetcestrc  16854
  Copyright terms: Public domain W3C validator