MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0nn Structured version   Visualization version   GIF version

Theorem elznn0nn 11593
Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
elznn0nn (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))

Proof of Theorem elznn0nn
StepHypRef Expression
1 elz 11581 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 andi 992 . . 3 ((𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
3 df-3or 1072 . . . 4 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ))
43anbi2i 609 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ ((𝑁 = 0 ∨ 𝑁 ∈ ℕ) ∨ -𝑁 ∈ ℕ)))
5 nn0re 11503 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65pm4.71ri 550 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0))
7 elnn0 11496 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 orcom 859 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
97, 8bitri 264 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ))
109anbi2i 609 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
116, 10bitri 264 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)))
1211orbi1i 899 . . 3 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ)) ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
132, 4, 123bitr4i 292 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
141, 13bitri 264 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wo 836  w3o 1070   = wceq 1631  wcel 2145  cr 10137  0cc0 10138  -cneg 10469  cn 11222  0cn0 11494  cz 11579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-i2m1 10206  ax-1ne0 10207  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580
This theorem is referenced by:  zindd  11680  expcl2lem  13079  mulexpz  13107  expaddz  13111  expmulz  13113  absexpz  14253  bitsfzo  15365  pcid  15784  mulgsubcl  17763  mulgneg  17768  ghmmulg  17880  prmirred  20058  tgpmulg  22117  dvexp3  23961  ipasslem3  28028  ztprmneprm  42653
  Copyright terms: Public domain W3C validator