MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznn0 Structured version   Visualization version   GIF version

Theorem elznn0 11576
Description: Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
elznn0 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))

Proof of Theorem elznn0
StepHypRef Expression
1 elz 11563 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 elnn0 11478 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32a1i 11 . . . . 5 (𝑁 ∈ ℝ → (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)))
4 elnn0 11478 . . . . . 6 (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ -𝑁 = 0))
5 recn 10210 . . . . . . . . 9 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
6 0cn 10216 . . . . . . . . 9 0 ∈ ℂ
7 negcon1 10517 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 0 ∈ ℂ) → (-𝑁 = 0 ↔ -0 = 𝑁))
85, 6, 7sylancl 697 . . . . . . . 8 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ -0 = 𝑁))
9 neg0 10511 . . . . . . . . . 10 -0 = 0
109eqeq1i 2757 . . . . . . . . 9 (-0 = 𝑁 ↔ 0 = 𝑁)
11 eqcom 2759 . . . . . . . . 9 (0 = 𝑁𝑁 = 0)
1210, 11bitri 264 . . . . . . . 8 (-0 = 𝑁𝑁 = 0)
138, 12syl6bb 276 . . . . . . 7 (𝑁 ∈ ℝ → (-𝑁 = 0 ↔ 𝑁 = 0))
1413orbi2d 740 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 ∈ ℕ ∨ -𝑁 = 0) ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
154, 14syl5bb 272 . . . . 5 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 ↔ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
163, 15orbi12d 748 . . . 4 (𝑁 ∈ ℝ → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0))))
17 3orass 1075 . . . . 5 ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
18 orcom 401 . . . . 5 ((𝑁 = 0 ∨ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ ((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0))
19 orordir 554 . . . . 5 (((𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ∨ 𝑁 = 0) ↔ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)))
2017, 18, 193bitrri 287 . . . 4 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∨ (-𝑁 ∈ ℕ ∨ 𝑁 = 0)) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
2116, 20syl6rbb 277 . . 3 (𝑁 ∈ ℝ → ((𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ) ↔ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2221pm5.32i 672 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
231, 22bitri 264 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wa 383  w3o 1071   = wceq 1624  wcel 2131  cc 10118  cr 10119  0cc0 10120  -cneg 10451  cn 11204  0cn0 11476  cz 11561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-po 5179  df-so 5180  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-ltxr 10263  df-sub 10452  df-neg 10453  df-n0 11477  df-z 11562
This theorem is referenced by:  elz2  11578  zmulcl  11610  expnegz  13080  expaddzlem  13089  odd2np1  15259  mulgz  17761  mulgdirlem  17765  mulgdir  17766  mulgass  17772  mulgdi  18424  cxpmul2z  24628  rexzrexnn0  37862  pell1234qrdich  37919  pell14qrexpcl  37925  pell14qrdich  37927  rmxnn  38012  jm2.19lem4  38053
  Copyright terms: Public domain W3C validator