![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elzdif0 | Structured version Visualization version GIF version |
Description: Lemma for qqhval2 30335. (Contributed by Thierry Arnoux, 29-Oct-2017.) |
Ref | Expression |
---|---|
elzdif0 | ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3875 | . . 3 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ) | |
2 | eldifn 3876 | . . 3 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 ∈ {0}) | |
3 | elsng 4335 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0)) | |
4 | 3 | notbid 307 | . . . 4 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ ¬ 𝑀 = 0)) |
5 | 4 | biimpa 502 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ ¬ 𝑀 ∈ {0}) → ¬ 𝑀 = 0) |
6 | 1, 2, 5 | syl2anc 696 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0) |
7 | elz 11571 | . . . . 5 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
8 | 1, 7 | sylib 208 | . . . 4 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
9 | 8 | simprd 482 | . . 3 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
10 | 3orass 1075 | . . 3 ⊢ ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
11 | 9, 10 | sylib 208 | . 2 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) |
12 | orel1 396 | . 2 ⊢ (¬ 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))) | |
13 | 6, 11, 12 | sylc 65 | 1 ⊢ (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 ∨ w3o 1071 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 {csn 4321 ℝcr 10127 0cc0 10128 -cneg 10459 ℕcn 11212 ℤcz 11569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-neg 10461 df-z 11570 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |