MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elz2 Structured version   Visualization version   GIF version

Theorem elz2 11595
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Distinct variable group:   𝑥,𝑦,𝑁

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 11593 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 nn0p1nn 11533 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantl 467 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
4 1nn 11232 . . . . . 6 1 ∈ ℕ
54a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ)
6 recn 10227 . . . . . . . 8 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76adantr 466 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
8 ax-1cn 10195 . . . . . . 7 1 ∈ ℂ
9 pncan 10488 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
107, 8, 9sylancl 566 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁)
1110eqcomd 2776 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 = ((𝑁 + 1) − 1))
12 rspceov 6836 . . . . 5 (((𝑁 + 1) ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑁 = ((𝑁 + 1) − 1)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
133, 5, 11, 12syl3anc 1475 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
144a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 1 ∈ ℕ)
156adantr 466 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
16 negsub 10530 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 + -𝑁) = (1 − 𝑁))
178, 15, 16sylancr 567 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) = (1 − 𝑁))
18 simpr 471 . . . . . . 7 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ0)
19 nnnn0addcl 11524 . . . . . . 7 ((1 ∈ ℕ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
204, 18, 19sylancr 567 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 + -𝑁) ∈ ℕ)
2117, 20eqeltrrd 2850 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − 𝑁) ∈ ℕ)
22 nncan 10511 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 − (1 − 𝑁)) = 𝑁)
238, 15, 22sylancr 567 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (1 − (1 − 𝑁)) = 𝑁)
2423eqcomd 2776 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → 𝑁 = (1 − (1 − 𝑁)))
25 rspceov 6836 . . . . 5 ((1 ∈ ℕ ∧ (1 − 𝑁) ∈ ℕ ∧ 𝑁 = (1 − (1 − 𝑁))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2614, 21, 24, 25syl3anc 1475 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
2713, 26jaodan 938 . . 3 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
28 nnre 11228 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
29 nnre 11228 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
30 resubcl 10546 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3128, 29, 30syl2an 575 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦) ∈ ℝ)
32 letric 10338 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
3329, 28, 32syl2anr 576 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥𝑥𝑦))
34 nnnn0 11500 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
35 nnnn0 11500 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
36 nn0sub 11544 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑥 ∈ ℕ0) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
3734, 35, 36syl2anr 576 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦𝑥 ↔ (𝑥𝑦) ∈ ℕ0))
38 nn0sub 11544 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
3935, 34, 38syl2an 575 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ (𝑦𝑥) ∈ ℕ0))
40 nncn 11229 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
41 nncn 11229 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
42 negsubdi2 10541 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → -(𝑥𝑦) = (𝑦𝑥))
4340, 41, 42syl2an 575 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → -(𝑥𝑦) = (𝑦𝑥))
4443eleq1d 2834 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (-(𝑥𝑦) ∈ ℕ0 ↔ (𝑦𝑥) ∈ ℕ0))
4539, 44bitr4d 271 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 ↔ -(𝑥𝑦) ∈ ℕ0))
4637, 45orbi12d 883 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦𝑥𝑥𝑦) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
4733, 46mpbid 222 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))
4831, 47jca 495 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
49 eleq1 2837 . . . . . 6 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
50 eleq1 2837 . . . . . . 7 (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℕ0 ↔ (𝑥𝑦) ∈ ℕ0))
51 negeq 10474 . . . . . . . 8 (𝑁 = (𝑥𝑦) → -𝑁 = -(𝑥𝑦))
5251eleq1d 2834 . . . . . . 7 (𝑁 = (𝑥𝑦) → (-𝑁 ∈ ℕ0 ↔ -(𝑥𝑦) ∈ ℕ0))
5350, 52orbi12d 883 . . . . . 6 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) ↔ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0)))
5449, 53anbi12d 608 . . . . 5 (𝑁 = (𝑥𝑦) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ((𝑥𝑦) ∈ ℝ ∧ ((𝑥𝑦) ∈ ℕ0 ∨ -(𝑥𝑦) ∈ ℕ0))))
5548, 54syl5ibrcom 237 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))))
5655rexlimivv 3183 . . 3 (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦) → (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
5727, 56impbii 199 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
581, 57bitri 264 1 (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wrex 3061   class class class wbr 4784  (class class class)co 6792  cc 10135  cr 10136  1c1 10138   + caddc 10140  cle 10276  cmin 10467  -cneg 10468  cn 11221  0cn0 11493  cz 11578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579
This theorem is referenced by:  dfz2  11596  zaddcl  11618
  Copyright terms: Public domain W3C validator