![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp7 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7275. (Contributed by NM, 19-Aug-2006.) |
Ref | Expression |
---|---|
elxp7 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 7367 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | fvex 6362 | . . . . 5 ⊢ (1st ‘𝐴) ∈ V | |
3 | fvex 6362 | . . . . 5 ⊢ (2nd ‘𝐴) ∈ V | |
4 | 2, 3 | pm3.2i 470 | . . . 4 ⊢ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) |
5 | elxp6 7367 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
6 | 4, 5 | mpbiran2 992 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
7 | 6 | anbi1i 733 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
8 | 1, 7 | bitr4i 267 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 × cxp 5264 ‘cfv 6049 1st c1st 7331 2nd c2nd 7332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fv 6057 df-1st 7333 df-2nd 7334 |
This theorem is referenced by: xp2 7370 unielxp 7371 1stconst 7433 2ndconst 7434 fparlem1 7445 fparlem2 7446 infxpenlem 9026 1stpreimas 29792 1stpreima 29793 2ndpreima 29794 f1od2 29808 xpinpreima2 30262 tpr2rico 30267 sxbrsigalem0 30642 dya2iocnrect 30652 elxp8 33530 pellex 37901 elpglem3 42969 |
Copyright terms: Public domain | W3C validator |