![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp6 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 7152. (Contributed by NM, 9-Oct-2004.) |
Ref | Expression |
---|---|
elxp6 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp4 7152 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) | |
2 | 1stval 7212 | . . . . 5 ⊢ (1st ‘𝐴) = ∪ dom {𝐴} | |
3 | 2ndval 7213 | . . . . 5 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
4 | 2, 3 | opeq12i 4438 | . . . 4 ⊢ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 |
5 | 4 | eqeq2i 2663 | . . 3 ⊢ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ↔ 𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉) |
6 | 2 | eleq1i 2721 | . . . 4 ⊢ ((1st ‘𝐴) ∈ 𝐵 ↔ ∪ dom {𝐴} ∈ 𝐵) |
7 | 3 | eleq1i 2721 | . . . 4 ⊢ ((2nd ‘𝐴) ∈ 𝐶 ↔ ∪ ran {𝐴} ∈ 𝐶) |
8 | 6, 7 | anbi12i 733 | . . 3 ⊢ (((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶) ↔ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶)) |
9 | 5, 8 | anbi12i 733 | . 2 ⊢ ((𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶)) ↔ (𝐴 = 〈∪ dom {𝐴}, ∪ ran {𝐴}〉 ∧ (∪ dom {𝐴} ∈ 𝐵 ∧ ∪ ran {𝐴} ∈ 𝐶))) |
10 | 1, 9 | bitr4i 267 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {csn 4210 〈cop 4216 ∪ cuni 4468 × cxp 5141 dom cdm 5143 ran crn 5144 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fv 5934 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: elxp7 7245 eqopi 7246 1st2nd2 7249 r0weon 8873 qredeu 15419 qnumdencl 15494 setsstruct2 15943 tx1cn 21460 tx2cn 21461 txhaus 21498 psmetxrge0 22165 xppreima 29577 ofpreima2 29594 smatrcl 29990 1stmbfm 30450 2ndmbfm 30451 oddpwdcv 30545 |
Copyright terms: Public domain | W3C validator |