MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2 Structured version   Visualization version   GIF version

Theorem elwwlks2 27110
Description: A walk of length 2 between two vertices as length 3 string in a pseudograph. (Contributed by Alexander van der Vekens, 21-Feb-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
elwwlks2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Distinct variable groups:   𝐺,𝑎,𝑏,𝑐,𝑓,𝑝   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝   𝑊,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem elwwlks2
StepHypRef Expression
1 elwwlks2.v . . . 4 𝑉 = (Vtx‘𝐺)
21wwlksnwwlksnon 27055 . . 3 (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐))
32a1i 11 . 2 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐)))
41elwwlks2on 27102 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉𝑐𝑉) → (𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
543expb 1114 . . 3 ((𝐺 ∈ UPGraph ∧ (𝑎𝑉𝑐𝑉)) → (𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
652rexbidva 3195 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉 𝑊 ∈ (𝑎(2 WWalksNOn 𝐺)𝑐) ↔ ∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))
7 rexcom 3238 . . . 4 (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8 s3cli 13847 . . . . . . . . . 10 ⟨“𝑎𝑏𝑐”⟩ ∈ Word V
98a1i 11 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ⟨“𝑎𝑏𝑐”⟩ ∈ Word V)
10 simplr 809 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
11 simpr 479 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
1210, 11eqtr4d 2798 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑊 = 𝑝)
1312breq2d 4817 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊𝑓(Walks‘𝐺)𝑝))
1413biimpd 219 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊𝑓(Walks‘𝐺)𝑝))
1514com12 32 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑊 → (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(Walks‘𝐺)𝑝))
1615adantr 472 . . . . . . . . . . . 12 ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → 𝑓(Walks‘𝐺)𝑝))
1716impcom 445 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → 𝑓(Walks‘𝐺)𝑝)
18 simprr 813 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (♯‘𝑓) = 2)
19 vex 3344 . . . . . . . . . . . . . . . 16 𝑎 ∈ V
20 s3fv0 13857 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘0) = 𝑎)
2120eqcomd 2767 . . . . . . . . . . . . . . . 16 (𝑎 ∈ V → 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0))
2219, 21mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑎 = (⟨“𝑎𝑏𝑐”⟩‘0))
23 fveq1 6353 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘0) = (⟨“𝑎𝑏𝑐”⟩‘0))
2422, 23eqtr4d 2798 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑎 = (𝑝‘0))
25 vex 3344 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
26 s3fv1 13858 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘1) = 𝑏)
2726eqcomd 2767 . . . . . . . . . . . . . . . 16 (𝑏 ∈ V → 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1))
2825, 27mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑏 = (⟨“𝑎𝑏𝑐”⟩‘1))
29 fveq1 6353 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘1) = (⟨“𝑎𝑏𝑐”⟩‘1))
3028, 29eqtr4d 2798 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑏 = (𝑝‘1))
31 vex 3344 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
32 s3fv2 13859 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ V → (⟨“𝑎𝑏𝑐”⟩‘2) = 𝑐)
3332eqcomd 2767 . . . . . . . . . . . . . . . 16 (𝑐 ∈ V → 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
3431, 33mp1i 13 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑐 = (⟨“𝑎𝑏𝑐”⟩‘2))
35 fveq1 6353 . . . . . . . . . . . . . . 15 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑝‘2) = (⟨“𝑎𝑏𝑐”⟩‘2))
3634, 35eqtr4d 2798 . . . . . . . . . . . . . 14 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → 𝑐 = (𝑝‘2))
3724, 30, 363jca 1123 . . . . . . . . . . . . 13 (𝑝 = ⟨“𝑎𝑏𝑐”⟩ → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
3837adantl 473 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
3938adantr 472 . . . . . . . . . . 11 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))
4017, 18, 393jca 1123 . . . . . . . . . 10 ((((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) ∧ (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))
4140ex 449 . . . . . . . . 9 (((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) ∧ 𝑝 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → (𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
429, 41spcimedv 3433 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) → ∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
43 wlklenvp1 26746 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑝) = ((♯‘𝑓) + 1))
44 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = ((♯‘𝑓) + 1))
45 oveq1 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) = 2 → ((♯‘𝑓) + 1) = (2 + 1))
4645adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → ((♯‘𝑓) + 1) = (2 + 1))
4744, 46eqtrd 2795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = (2 + 1))
4847adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2)) → (♯‘𝑝) = (2 + 1))
49 2p1e3 11364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 + 1) = 3
5048, 49syl6eq 2811 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓(Walks‘𝐺)𝑝 ∧ ((♯‘𝑝) = ((♯‘𝑓) + 1) ∧ (♯‘𝑓) = 2)) → (♯‘𝑝) = 3)
5150exp32 632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑝) = ((♯‘𝑓) + 1) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3)))
5243, 51mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
5352adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → ((♯‘𝑓) = 2 → (♯‘𝑝) = 3))
5453imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) → (♯‘𝑝) = 3)
55 eqcom 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = (𝑝‘0) ↔ (𝑝‘0) = 𝑎)
5655biimpi 206 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = (𝑝‘0) → (𝑝‘0) = 𝑎)
57 eqcom 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = (𝑝‘1) ↔ (𝑝‘1) = 𝑏)
5857biimpi 206 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = (𝑝‘1) → (𝑝‘1) = 𝑏)
59 eqcom 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = (𝑝‘2) ↔ (𝑝‘2) = 𝑐)
6059biimpi 206 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = (𝑝‘2) → (𝑝‘2) = 𝑐)
6156, 58, 603anim123i 1155 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))
6254, 61anim12i 591 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐)))
631wlkpwrd 26745 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓(Walks‘𝐺)𝑝𝑝 ∈ Word 𝑉)
64 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → 𝑎𝑉)
6564anim1i 593 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
66 3anass 1081 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ (𝑎𝑉 ∧ (𝑏𝑉𝑐𝑉)))
6765, 66sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
6867adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑎𝑉𝑏𝑉𝑐𝑉))
6963, 68anim12i 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → (𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)))
7069ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)))
71 eqwrds3 13926 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ Word 𝑉 ∧ (𝑎𝑉𝑏𝑉𝑐𝑉)) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
7270, 71syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑝 = ⟨“𝑎𝑏𝑐”⟩ ↔ ((♯‘𝑝) = 3 ∧ ((𝑝‘0) = 𝑎 ∧ (𝑝‘1) = 𝑏 ∧ (𝑝‘2) = 𝑐))))
7362, 72mpbird 247 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 = ⟨“𝑎𝑏𝑐”⟩)
74 simprr 813 . . . . . . . . . . . . . . . . . . 19 ((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
7574ad2antrr 764 . . . . . . . . . . . . . . . . . 18 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑊 = ⟨“𝑎𝑏𝑐”⟩)
7673, 75eqtr4d 2798 . . . . . . . . . . . . . . . . 17 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → 𝑝 = 𝑊)
7776breq2d 4817 . . . . . . . . . . . . . . . 16 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)𝑊))
7877biimpd 219 . . . . . . . . . . . . . . 15 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝𝑓(Walks‘𝐺)𝑊))
79 simplr 809 . . . . . . . . . . . . . . 15 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (♯‘𝑓) = 2)
8078, 79jctird 568 . . . . . . . . . . . . . 14 ((((𝑓(Walks‘𝐺)𝑝 ∧ (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩)) ∧ (♯‘𝑓) = 2) ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8180exp41 639 . . . . . . . . . . . . 13 (𝑓(Walks‘𝐺)𝑝 → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))))
8281com25 99 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2))))))
8382pm2.43i 52 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) = 2 → ((𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))))
84833imp 1102 . . . . . . . . . 10 ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8584com12 32 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8685exlimdv 2011 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))) → (𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)))
8742, 86impbid 202 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → ((𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) ↔ ∃𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
8887exbidv 2000 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) ∧ 𝑊 = ⟨“𝑎𝑏𝑐”⟩) → (∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2) ↔ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2)))))
8988pm5.32da 676 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑎𝑉) ∧ (𝑏𝑉𝑐𝑉)) → ((𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
90892rexbidva 3195 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
917, 90syl5bb 272 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑎𝑉) → (∃𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
9291rexbidva 3188 . 2 (𝐺 ∈ UPGraph → (∃𝑎𝑉𝑐𝑉𝑏𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓(𝑓(Walks‘𝐺)𝑊 ∧ (♯‘𝑓) = 2)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
933, 6, 923bitrd 294 1 (𝐺 ∈ UPGraph → (𝑊 ∈ (2 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑊 = ⟨“𝑎𝑏𝑐”⟩ ∧ ∃𝑓𝑝(𝑓(Walks‘𝐺)𝑝 ∧ (♯‘𝑓) = 2 ∧ (𝑎 = (𝑝‘0) ∧ 𝑏 = (𝑝‘1) ∧ 𝑐 = (𝑝‘2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2140  wrex 3052  Vcvv 3341   class class class wbr 4805  cfv 6050  (class class class)co 6815  0cc0 10149  1c1 10150   + caddc 10152  2c2 11283  3c3 11284  chash 13332  Word cword 13498  ⟨“cs3 13808  Vtxcvtx 26095  UPGraphcupgr 26196  Walkscwlks 26724   WWalksN cwwlksn 26951   WWalksNOn cwwlksnon 26952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-ac2 9498  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-ac 9150  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-concat 13508  df-s1 13509  df-s2 13814  df-s3 13815  df-edg 26161  df-uhgr 26174  df-upgr 26198  df-wlks 26727  df-wwlks 26955  df-wwlksn 26956  df-wwlksnon 26957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator