MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzge2nn0 Structured version   Visualization version   GIF version

Theorem eluzge2nn0 11940
Description: If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.)
Assertion
Ref Expression
eluzge2nn0 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)

Proof of Theorem eluzge2nn0
StepHypRef Expression
1 eluz2nn 11939 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
21nnnn0d 11563 1 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  cfv 6049  2c2 11282  0cn0 11504  cuz 11899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900
This theorem is referenced by:  bernneq3  13206  relexpuzrel  14011  oddge22np1  15295  isprm5  15641  dfphi2  15701  bposlem2  25230  dlwwlknonclwlknonf1olem1  27545  rmspecnonsq  37992  rmspecfund  37994  rmspecpos  38001  rmxypos  38034  jm3.1  38107  relexpaddss  38530  fmtnorec4  41989  fmtnoprmfac2lem1  42006  fmtnoprmfac2  42007  fmtnofac2lem  42008  fmtnofac2  42009  fmtnofac1  42010  lighneallem2  42051  lighneallem4a  42053  lighneallem4b  42054  blennngt2o2  42914  blengt1fldiv2p1  42915  digexp  42929  dignn0flhalf  42940  nn0sumshdiglemB  42942
  Copyright terms: Public domain W3C validator