![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 11904 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 10274 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ‘cfv 6030 ℂcc 10140 ℤ≥cuz 11893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-cnex 10198 ax-resscn 10199 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-ov 6799 df-neg 10475 df-z 11585 df-uz 11894 |
This theorem is referenced by: uzp1 11928 peano2uzr 11950 uzaddcl 11951 eluzgtdifelfzo 12738 fzosplitpr 12785 fldiv4lem1div2uz2 12845 mulp1mod1 12919 seqm1 13025 bcval5 13309 swrdfv2 13655 relexpaddg 14001 shftuz 14017 seqshft 14033 climshftlem 14513 climshft 14515 isumshft 14778 dvdsexp 15258 pclem 15750 efgtlen 18346 dvradcnv 24395 clwwlkext2edg 27213 clwwlknonex2lem1 27283 clwwlknonex2lem2 27284 clwwlknonex2 27285 extwwlkfablem1OLD 27524 2clwwlk2clwwlk 27534 numclwwlk1lem2foalem 27537 numclwwlk1lem2fo 27544 numclwwlk2 27572 numclwwlk2OLD 27579 nn0prpwlem 32654 rmspecsqrtnq 37996 rmspecsqrtnqOLD 37997 rmxm1 38025 rmym1 38026 rmxluc 38027 rmyluc 38028 rmyluc2 38029 jm2.17a 38053 relexpaddss 38536 trclfvdecomr 38546 binomcxplemnn0 39074 stoweidlem14 40745 fmtnorec3 41985 lighneallem4a 42050 lighneallem4b 42051 evengpop3 42211 evengpoap3 42212 nnsum4primeseven 42213 nnsum4primesevenALTV 42214 expnegico01 42833 dignn0ldlem 42921 dignnld 42922 digexp 42926 dig1 42927 nn0sumshdiglemB 42939 |
Copyright terms: Public domain | W3C validator |