![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzel2 | Structured version Visualization version GIF version |
Description: Implication of membership in an upper set of integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluzel2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6381 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ dom ℤ≥) | |
2 | uzf 11882 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
3 | 2 | fdmi 6213 | . 2 ⊢ dom ℤ≥ = ℤ |
4 | 1, 3 | syl6eleq 2849 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 𝒫 cpw 4302 dom cdm 5266 ‘cfv 6049 ℤcz 11569 ℤ≥cuz 11879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-neg 10461 df-z 11570 df-uz 11880 |
This theorem is referenced by: eluz2 11885 uztrn 11896 uzneg 11898 uzss 11900 uz11 11902 eluzadd 11908 subeluzsub 11910 uzm1 11911 uzin 11913 uzind4 11939 uzsupss 11973 elfz5 12527 elfzel1 12534 eluzfz1 12541 fzsplit2 12559 fzopth 12571 ssfzunsn 12580 fzpred 12582 fzpreddisj 12583 uzsplit 12605 uzdisj 12606 fzm1 12613 uznfz 12616 nn0disj 12649 preduz 12655 fzolb 12670 fzoss2 12690 fzouzdisj 12698 fzoun 12699 ige2m2fzo 12725 fzen2 12962 seqp1 13010 seqcl 13015 seqfeq2 13018 seqfveq 13019 seqshft2 13021 seqsplit 13028 seqcaopr3 13030 seqf1olem2a 13033 seqf1olem1 13034 seqf1olem2 13035 seqid 13040 seqhomo 13042 seqz 13043 leexp2a 13110 hashfz 13406 fzsdom2 13407 hashfzo 13408 hashfzp1 13410 seqcoll 13440 rexanuz2 14288 cau4 14295 clim2ser 14584 clim2ser2 14585 climserle 14592 caurcvg 14606 caucvg 14608 fsumcvg 14642 fsumcvg2 14657 fsumsers 14658 fsumm1 14679 fsum1p 14681 fsumrev2 14713 telfsumo 14733 fsumparts 14737 cvgcmp 14747 cvgcmpub 14748 cvgcmpce 14749 isumsplit 14771 clim2prod 14819 clim2div 14820 prodfrec 14826 ntrivcvgtail 14831 fprodcvg 14859 fprodser 14878 fprodm1 14896 fprodeq0 14904 pcaddlem 15794 vdwnnlem2 15902 prmlem0 16014 gsumval2a 17480 telgsumfzs 18586 dvfsumle 23983 dvfsumge 23984 dvfsumabs 23985 coeid3 24195 ulmres 24341 ulmss 24350 chtdif 25083 ppidif 25088 bcmono 25201 axlowdimlem6 26026 inffz 31921 inffzOLD 31922 mettrifi 33866 jm2.25 38068 jm2.16nn0 38073 dvgrat 39013 ssinc 39763 ssdec 39764 fzdifsuc2 40023 iuneqfzuzlem 40048 ssuzfz 40063 ioodvbdlimc1lem2 40650 ioodvbdlimc2lem 40652 carageniuncllem1 41241 caratheodorylem1 41246 |
Copyright terms: Public domain | W3C validator |