![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz1 | Structured version Visualization version GIF version |
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.) |
Ref | Expression |
---|---|
eluz1 | ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzval 11889 | . . 3 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) = {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) | |
2 | 1 | eleq2d 2835 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘})) |
3 | breq2 4788 | . . 3 ⊢ (𝑘 = 𝑁 → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ 𝑁)) | |
4 | 3 | elrab 3513 | . 2 ⊢ (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
5 | 2, 4 | syl6bb 276 | 1 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2144 {crab 3064 class class class wbr 4784 ‘cfv 6031 ≤ cle 10276 ℤcz 11578 ℤ≥cuz 11887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-cnex 10193 ax-resscn 10194 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-neg 10470 df-z 11579 df-uz 11888 |
This theorem is referenced by: eluz2 11893 eluz1i 11895 eluz 11901 uzid 11902 uzss 11908 eluzp1m1 11911 raluz 11937 rexuz 11939 preduz 12668 fi1uzind 13480 algcvga 15499 uzssico 29880 nndiffz1 29882 fzspl 29884 breprexplemc 31044 lzunuz 37850 |
Copyright terms: Public domain | W3C validator |