MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1 Structured version   Visualization version   GIF version

Theorem eluz1 11891
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))

Proof of Theorem eluz1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzval 11889 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) = {𝑘 ∈ ℤ ∣ 𝑀𝑘})
21eleq2d 2835 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}))
3 breq2 4788 . . 3 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
43elrab 3513 . 2 (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
52, 4syl6bb 276 1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2144  {crab 3064   class class class wbr 4784  cfv 6031  cle 10276  cz 11578  cuz 11887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034  ax-cnex 10193  ax-resscn 10194
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-neg 10470  df-z 11579  df-uz 11888
This theorem is referenced by:  eluz2  11893  eluz1i  11895  eluz  11901  uzid  11902  uzss  11908  eluzp1m1  11911  raluz  11937  rexuz  11939  preduz  12668  fi1uzind  13480  algcvga  15499  uzssico  29880  nndiffz1  29882  fzspl  29884  breprexplemc  31044  lzunuz  37850
  Copyright terms: Public domain W3C validator