![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluz | Structured version Visualization version GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 11804 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 986 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2103 class class class wbr 4760 ‘cfv 6001 ≤ cle 10188 ℤcz 11490 ℤ≥cuz 11800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 ax-cnex 10105 ax-resscn 10106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-ov 6768 df-neg 10382 df-z 11491 df-uz 11801 |
This theorem is referenced by: uzneg 11819 uztric 11822 uzwo3 11897 fzn 12471 fzsplit2 12480 fznn 12522 uzsplit 12526 elfz2nn0 12545 fzouzsplit 12618 faclbnd 13192 bcval5 13220 fz1isolem 13358 seqcoll 13361 rexuzre 14212 caurcvg 14527 caucvg 14529 summolem2a 14566 fsum0diaglem 14628 climcnds 14703 mertenslem1 14736 ntrivcvgmullem 14753 prodmolem2a 14784 ruclem10 15088 eulerthlem2 15610 pcpremul 15671 pcdvdsb 15696 pcadd 15716 pcfac 15726 pcbc 15727 prmunb 15741 prmreclem5 15747 vdwnnlem3 15824 lt6abl 18417 ovolunlem1a 23385 mbflimsup 23553 plyco0 24068 plyeq0lem 24086 aannenlem1 24203 aaliou3lem2 24218 aaliou3lem8 24220 chtublem 25056 bcmax 25123 bpos1lem 25127 bposlem1 25129 axlowdimlem16 25957 fzsplit3 29783 ballotlem2 30780 ballotlemimin 30797 breprexplemc 30940 elfzm12 31797 poimirlem3 33644 poimirlem4 33645 poimirlem28 33669 mblfinlem2 33679 incsequz 33776 incsequz2 33777 nacsfix 37694 ellz1 37749 eluzrabdioph 37789 monotuz 37925 expdiophlem1 38007 nznngen 38934 fzisoeu 39930 fmul01 40232 climsuselem1 40259 climsuse 40260 iblspltprt 40609 itgspltprt 40615 wallispilem5 40706 stirlinglem8 40718 dirkertrigeqlem1 40735 fourierdlem12 40756 ssfz12 41751 |
Copyright terms: Public domain | W3C validator |