HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elunop2 Structured version   Visualization version   GIF version

Theorem elunop2 29202
Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
elunop2 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Distinct variable group:   𝑥,𝑇

Proof of Theorem elunop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 unoplin 29109 . . 3 (𝑇 ∈ UniOp → 𝑇 ∈ LinOp)
2 elunop 29061 . . . 4 (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦)))
32simplbi 478 . . 3 (𝑇 ∈ UniOp → 𝑇: ℋ–onto→ ℋ)
4 unopnorm 29106 . . . 4 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ) → (norm‘(𝑇𝑥)) = (norm𝑥))
54ralrimiva 3104 . . 3 (𝑇 ∈ UniOp → ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥))
61, 3, 53jca 1123 . 2 (𝑇 ∈ UniOp → (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
7 eleq1 2827 . . 3 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ UniOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp))
8 eleq1 2827 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇 ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
9 foeq1 6273 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇: ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
10 fveq2 6353 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
1110fveq2d 6357 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm‘(𝑇𝑥)) = (norm‘(𝑇𝑦)))
12 fveq2 6353 . . . . . . . . . 10 (𝑥 = 𝑦 → (norm𝑥) = (norm𝑦))
1311, 12eqeq12d 2775 . . . . . . . . 9 (𝑥 = 𝑦 → ((norm‘(𝑇𝑥)) = (norm𝑥) ↔ (norm‘(𝑇𝑦)) = (norm𝑦)))
1413cbvralv 3310 . . . . . . . 8 (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦))
15 fveq1 6352 . . . . . . . . . . 11 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (𝑇𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
1615fveq2d 6357 . . . . . . . . . 10 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (norm‘(𝑇𝑦)) = (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)))
1716eqeq1d 2762 . . . . . . . . 9 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1817ralbidv 3124 . . . . . . . 8 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
1914, 18syl5bb 272 . . . . . . 7 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
208, 9, 193anbi123d 1548 . . . . . 6 (𝑇 = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
21 eleq1 2827 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ) ∈ LinOp ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp))
22 foeq1 6273 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ): ℋ–onto→ ℋ ↔ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ))
23 fveq1 6352 . . . . . . . . . 10 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (( I ↾ ℋ)‘𝑦) = (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦))
2423fveq2d 6357 . . . . . . . . 9 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (norm‘(( I ↾ ℋ)‘𝑦)) = (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)))
2524eqeq1d 2762 . . . . . . . 8 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2625ralbidv 3124 . . . . . . 7 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → (∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦) ↔ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)))
2721, 22, 263anbi123d 1548 . . . . . 6 (( I ↾ ℋ) = if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) → ((( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)) ↔ (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))))
28 idlnop 29181 . . . . . . 7 ( I ↾ ℋ) ∈ LinOp
29 f1oi 6336 . . . . . . . 8 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
30 f1ofo 6306 . . . . . . . 8 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
3129, 30ax-mp 5 . . . . . . 7 ( I ↾ ℋ): ℋ–onto→ ℋ
32 fvresi 6604 . . . . . . . . 9 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
3332fveq2d 6357 . . . . . . . 8 (𝑦 ∈ ℋ → (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3433rgen 3060 . . . . . . 7 𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦)
3528, 31, 343pm3.2i 1424 . . . . . 6 (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(( I ↾ ℋ)‘𝑦)) = (norm𝑦))
3620, 27, 35elimhyp 4290 . . . . 5 (if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ ∧ ∀𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦))
3736simp1i 1134 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ LinOp
3836simp2i 1135 . . . 4 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)): ℋ–onto→ ℋ
3936simp3i 1136 . . . 4 𝑦 ∈ ℋ (norm‘(if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ))‘𝑦)) = (norm𝑦)
4037, 38, 39lnopunii 29201 . . 3 if((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)), 𝑇, ( I ↾ ℋ)) ∈ UniOp
417, 40dedth 4283 . 2 ((𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)) → 𝑇 ∈ UniOp)
426, 41impbii 199 1 (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (norm‘(𝑇𝑥)) = (norm𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1072   = wceq 1632  wcel 2139  wral 3050  ifcif 4230   I cid 5173  cres 5268  ontowfo 6047  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  chil 28106   ·ih csp 28109  normcno 28110  LinOpclo 28134  UniOpcuo 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-hilex 28186  ax-hfvadd 28187  ax-hvcom 28188  ax-hvass 28189  ax-hv0cl 28190  ax-hvaddid 28191  ax-hfvmul 28192  ax-hvmulid 28193  ax-hvdistr2 28196  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his2 28270  ax-his3 28271  ax-his4 28272
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-hnorm 28155  df-hvsub 28158  df-lnop 29030  df-unop 29032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator