![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elunop | Structured version Visualization version GIF version |
Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elunop | ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3361 | . 2 ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ V) | |
2 | fof 6256 | . . . 4 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
3 | ax-hilex 28190 | . . . 4 ⊢ ℋ ∈ V | |
4 | fex 6632 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V) | |
5 | 2, 3, 4 | sylancl 566 | . . 3 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V) |
6 | 5 | adantr 466 | . 2 ⊢ ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V) |
7 | foeq1 6252 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ)) | |
8 | fveq1 6331 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
9 | fveq1 6331 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
10 | 8, 9 | oveq12d 6810 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
11 | 10 | eqeq1d 2772 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
12 | 11 | 2ralbidv 3137 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
13 | 7, 12 | anbi12d 608 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
14 | df-unop 29036 | . . 3 ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | |
15 | 13, 14 | elab2g 3502 | . 2 ⊢ (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
16 | 1, 6, 15 | pm5.21nii 367 | 1 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 Vcvv 3349 ⟶wf 6027 –onto→wfo 6029 ‘cfv 6031 (class class class)co 6792 ℋchil 28110 ·ih csp 28113 UniOpcuo 28140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-hilex 28190 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-unop 29036 |
This theorem is referenced by: unop 29108 unopf1o 29109 cnvunop 29111 counop 29114 idunop 29171 lnopunii 29205 elunop2 29206 |
Copyright terms: Public domain | W3C validator |