MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunnel1 Structured version   Visualization version   GIF version

Theorem elunnel1 3752
Description: A member of a union that is not member of the first class, is member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)

Proof of Theorem elunnel1
StepHypRef Expression
1 elun 3751 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 206 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcanai 952 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  wcel 1989  cun 3570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-v 3200  df-un 3577
This theorem is referenced by:  fsumsplitsn  14468  fprodsplitsn  14714  founiiun0  39199  infxrpnf  39493  dvnprodlem1  39930  fourierdlem70  40162  fourierdlem71  40163  fourierdlem80  40172  sge0splitmpt  40397  sge0iunmptlemfi  40399  nnfoctbdjlem  40441  hoidmvlelem2  40579  hoidmvlelem3  40580  pimrecltpos  40688
  Copyright terms: Public domain W3C validator