![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunirab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab | ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 4479 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rab 2950 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | unieqi 4477 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
4 | 3 | eleq2i 2722 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
5 | df-rex 2947 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑))) | |
6 | an12 855 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ (𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
7 | 6 | exbii 1814 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 5, 7 | bitri 264 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 1, 4, 8 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 {cab 2637 ∃wrex 2942 {crab 2945 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-rab 2950 df-v 3233 df-uni 4469 |
This theorem is referenced by: neiptopuni 20982 cmpcov2 21241 tgcmp 21252 hauscmplem 21257 conncompid 21282 alexsubALT 21902 cvmliftlem15 31406 fnessref 32477 cover2 33638 |
Copyright terms: Public domain | W3C validator |