MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltx Structured version   Visualization version   GIF version

Theorem eltx 21573
Description: A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
eltx ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Distinct variable groups:   𝑥,𝑝,𝑦,𝐽   𝐾,𝑝,𝑥,𝑦   𝑆,𝑝,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑝)   𝑊(𝑥,𝑦,𝑝)

Proof of Theorem eltx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . 4 ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
21txval 21569 . . 3 ((𝐽𝑉𝐾𝑊) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))))
32eleq2d 2825 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ 𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)))))
41txbasex 21571 . . . 4 ((𝐽𝑉𝐾𝑊) → ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V)
5 eltg2b 20965 . . . 4 (ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) ∈ V → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
64, 5syl 17 . . 3 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆)))
7 vex 3343 . . . . . . 7 𝑥 ∈ V
8 vex 3343 . . . . . . 7 𝑦 ∈ V
97, 8xpex 7127 . . . . . 6 (𝑥 × 𝑦) ∈ V
109rgen2w 3063 . . . . 5 𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V
11 eqid 2760 . . . . . 6 (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦)) = (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))
12 eleq2 2828 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑝𝑧𝑝 ∈ (𝑥 × 𝑦)))
13 sseq1 3767 . . . . . . 7 (𝑧 = (𝑥 × 𝑦) → (𝑧𝑆 ↔ (𝑥 × 𝑦) ⊆ 𝑆))
1412, 13anbi12d 749 . . . . . 6 (𝑧 = (𝑥 × 𝑦) → ((𝑝𝑧𝑧𝑆) ↔ (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1511, 14rexrnmpt2 6941 . . . . 5 (∀𝑥𝐽𝑦𝐾 (𝑥 × 𝑦) ∈ V → (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
1610, 15ax-mp 5 . . . 4 (∃𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∃𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
1716ralbii 3118 . . 3 (∀𝑝𝑆𝑧 ∈ ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))(𝑝𝑧𝑧𝑆) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))
186, 17syl6bb 276 . 2 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (topGen‘ran (𝑥𝐽, 𝑦𝐾 ↦ (𝑥 × 𝑦))) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
193, 18bitrd 268 1 ((𝐽𝑉𝐾𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝𝑆𝑥𝐽𝑦𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  wss 3715   × cxp 5264  ran crn 5267  cfv 6049  (class class class)co 6813  cmpt2 6815  topGenctg 16300   ×t ctx 21565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-topgen 16306  df-tx 21567
This theorem is referenced by:  txcls  21609  txcnpi  21613  txdis  21637  txindis  21639  txdis1cn  21640  txlly  21641  txnlly  21642  txtube  21645  txcmplem1  21646  hausdiag  21650  tx1stc  21655  qustgplem  22125  txomap  30210  cvmlift2lem10  31601
  Copyright terms: Public domain W3C validator