MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Structured version   Visualization version   GIF version

Theorem eltskg 9557
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑤,𝑇,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑤)

Proof of Theorem eltskg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3619 . . . . 5 (𝑦 = 𝑇 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑧𝑇))
2 rexeq 3134 . . . . 5 (𝑦 = 𝑇 → (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑇 𝒫 𝑧𝑤))
31, 2anbi12d 746 . . . 4 (𝑦 = 𝑇 → ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
43raleqbi1dv 3141 . . 3 (𝑦 = 𝑇 → (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
5 pweq 4152 . . . 4 (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇)
6 breq2 4648 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
7 eleq2 2688 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
86, 7orbi12d 745 . . . 4 (𝑦 = 𝑇 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑇𝑧𝑇)))
95, 8raleqbidv 3147 . . 3 (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
104, 9anbi12d 746 . 2 (𝑦 = 𝑇 → ((∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
11 df-tsk 9556 . 2 Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
1210, 11elab2g 3347 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wral 2909  wrex 2910  wss 3567  𝒫 cpw 4149   class class class wbr 4644  cen 7937  Tarskictsk 9555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-tsk 9556
This theorem is referenced by:  eltsk2g  9558  tskpwss  9559  tsken  9561  grothtsk  9642
  Copyright terms: Public domain W3C validator