![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version |
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltp.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eltpg 4372 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ w3o 1071 = wceq 1632 ∈ wcel 2140 Vcvv 3341 {ctp 4326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-sn 4323 df-pr 4325 df-tp 4327 |
This theorem is referenced by: dftp2 4376 tpid1 4448 tpid2 4449 tpres 6632 fntpb 6639 bpoly3 15009 cnfldfunALT 19982 gausslemma2dlem0i 25310 2lgsoddprm 25362 nb3grprlem1 26502 frgr3vlem1 27449 frgr3vlem2 27450 prodtp 29904 hgt750lemb 31065 brtp 31968 sltsolem1 32154 fmtno4prmfac 42013 |
Copyright terms: Public domain | W3C validator |