![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltopss | Structured version Visualization version GIF version |
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
eltopss | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4619 | . . 3 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
2 | 1open.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 1, 2 | syl6sseqr 3793 | . 2 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ 𝑋) |
4 | 3 | adantl 473 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 Topctop 20920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-uni 4589 |
This theorem is referenced by: riinopn 20935 opncld 21059 ntrval2 21077 ntrss3 21086 cmclsopn 21088 opncldf1 21110 opnneissb 21140 opnssneib 21141 opnneiss 21144 neitr 21206 restntr 21208 cnpnei 21290 imasnopn 21715 cnextcn 22092 utopreg 22277 opnregcld 32652 ptrecube 33740 poimirlem29 33769 poimir 33773 |
Copyright terms: Public domain | W3C validator |