![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg4i | Structured version Visualization version GIF version |
Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
eltg4i | ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6361 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
2 | eltg 20981 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) |
4 | 3 | ibi 256 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴)) |
5 | inss2 3980 | . . . . 5 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 | |
6 | 5 | unissi 4595 | . . . 4 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ ∪ 𝒫 𝐴 |
7 | unipw 5046 | . . . 4 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
8 | 6, 7 | sseqtri 3784 | . . 3 ⊢ ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴 |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∪ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐴) |
10 | 4, 9 | eqssd 3767 | 1 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 ∩ cin 3720 ⊆ wss 3721 𝒫 cpw 4295 ∪ cuni 4572 dom cdm 5249 ‘cfv 6031 topGenctg 16305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-topgen 16311 |
This theorem is referenced by: eltg3 20986 tgdom 21002 tgidm 21004 ontgval 32761 |
Copyright terms: Public domain | W3C validator |