MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg3 Structured version   Visualization version   GIF version

Theorem eltg3 20988
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eltg3
StepHypRef Expression
1 elfvdm 6382 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 inex1g 4953 . . . 4 (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V)
31, 2syl 17 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V)
4 eltg4i 20986 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
5 inss1 3976 . . . . . . 7 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵
6 sseq1 3767 . . . . . . 7 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵))
75, 6mpbiri 248 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥𝐵)
87biantrurd 530 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥 ↔ (𝑥𝐵𝐴 = 𝑥)))
9 unieq 4596 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 = (𝐵 ∩ 𝒫 𝐴))
109eqeq2d 2770 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥𝐴 = (𝐵 ∩ 𝒫 𝐴)))
118, 10bitr3d 270 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥𝐵𝐴 = 𝑥) ↔ 𝐴 = (𝐵 ∩ 𝒫 𝐴)))
1211spcegv 3434 . . 3 ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
133, 4, 12sylc 65 . 2 (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝐴 = 𝑥))
14 eltg3i 20987 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
15 eleq1 2827 . . . . 5 (𝐴 = 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ (topGen‘𝐵)))
1614, 15syl5ibrcom 237 . . . 4 ((𝐵𝑉𝑥𝐵) → (𝐴 = 𝑥𝐴 ∈ (topGen‘𝐵)))
1716expimpd 630 . . 3 (𝐵𝑉 → ((𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
1817exlimdv 2010 . 2 (𝐵𝑉 → (∃𝑥(𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
1913, 18impbid2 216 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  Vcvv 3340  cin 3714  wss 3715  𝒫 cpw 4302   cuni 4588  dom cdm 5266  cfv 6049  topGenctg 16320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16326
This theorem is referenced by:  tgval3  20989  tgtop  20999  eltop3  21002  tgidm  21006  bastop1  21019  tgrest  21185  tgcn  21278  txbasval  21631  opnmblALT  23591  mbfimaopnlem  23641  isfne3  32665  fneuni  32669  dissneqlem  33516  tgqioo2  40295
  Copyright terms: Public domain W3C validator