MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltayl Structured version   Visualization version   GIF version

Theorem eltayl 24108
Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
eltayl (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐴(𝑘)   𝑇(𝑘)   𝑌(𝑘)

Proof of Theorem eltayl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
2 taylfval.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
3 taylfval.a . . . 4 (𝜑𝐴𝑆)
4 taylfval.n . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
5 taylfval.b . . . 4 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
6 taylfval.t . . . 4 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
71, 2, 3, 4, 5, 6taylfval 24107 . . 3 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
87eleq2d 2686 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ 𝑇 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))))
9 df-br 4652 . . 3 (𝑋𝑇𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ 𝑇)
109bicomi 214 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑇𝑋𝑇𝑌)
11 oveq1 6654 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐵) = (𝑋𝐵))
1211oveq1d 6662 . . . . . 6 (𝑥 = 𝑋 → ((𝑥𝐵)↑𝑘) = ((𝑋𝐵)↑𝑘))
1312oveq2d 6663 . . . . 5 (𝑥 = 𝑋 → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))
1413mpteq2dv 4743 . . . 4 (𝑥 = 𝑋 → (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))))
1514oveq2d 6663 . . 3 (𝑥 = 𝑋 → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))
1615opeliunxp2 5258 . 2 (⟨𝑋, 𝑌⟩ ∈ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘))))))
178, 10, 163bitr3g 302 1 (𝜑 → (𝑋𝑇𝑌 ↔ (𝑋 ∈ ℂ ∧ 𝑌 ∈ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑋𝐵)↑𝑘)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1482  wcel 1989  cin 3571  wss 3572  {csn 4175  {cpr 4177  cop 4181   ciun 4518   class class class wbr 4651  cmpt 4727   × cxp 5110  dom cdm 5112  wf 5882  cfv 5886  (class class class)co 6647  cc 9931  cr 9932  0cc0 9933   · cmul 9938  +∞cpnf 10068  cmin 10263   / cdiv 10681  0cn0 11289  cz 11374  [,]cicc 12175  cexp 12855  !cfa 13055  fldccnfld 19740   tsums ctsu 21923   D𝑛 cdvn 23622   Tayl ctayl 24101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-fi 8314  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-icc 12179  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-fac 13056  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-plusg 15948  df-mulr 15949  df-starv 15950  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-rest 16077  df-topn 16078  df-0g 16096  df-gsum 16097  df-topgen 16098  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-cntz 17744  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-cring 18544  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-fbas 19737  df-fg 19738  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-cld 20817  df-ntr 20818  df-cls 20819  df-nei 20896  df-lp 20934  df-perf 20935  df-cnp 21026  df-haus 21113  df-fil 21644  df-fm 21736  df-flim 21737  df-flf 21738  df-tsms 21924  df-xms 22119  df-ms 22120  df-limc 23624  df-dv 23625  df-dvn 23626  df-tayl 24103
This theorem is referenced by:  taylf  24109  tayl0  24110
  Copyright terms: Public domain W3C validator