![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsuci | Structured version Visualization version GIF version |
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elsuci | ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 5767 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
2 | 1 | eleq2i 2722 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
3 | elun 3786 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
4 | 2, 3 | bitri 264 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
5 | elsni 4227 | . . 3 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
6 | 5 | orim2i 539 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
7 | 4, 6 | sylbi 207 | 1 ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 {csn 4210 suc csuc 5763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-sn 4211 df-suc 5767 |
This theorem is referenced by: suctr 5846 trsucss 5849 ordnbtwn 5854 ordnbtwnOLD 5855 suc11 5869 tfrlem11 7529 omordi 7691 nnmordi 7756 phplem3 8182 pssnn 8219 r1sdom 8675 cfsuc 9117 axdc3lem2 9311 axdc3lem4 9313 indpi 9767 bnj563 30939 bnj964 31139 ontgval 32555 onsucconni 32561 suctrALT 39375 suctrALT2VD 39385 suctrALT2 39386 suctrALTcf 39472 suctrALTcfVD 39473 suctrALT3 39474 |
Copyright terms: Public domain | W3C validator |