MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsn2g Structured version   Visualization version   GIF version

Theorem elsn2g 4355
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 4338 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 snidg 4351 . . 3 (𝐵𝑉𝐵 ∈ {𝐵})
3 eleq1 2827 . . 3 (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵}))
42, 3syl5ibrcom 237 . 2 (𝐵𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
51, 4impbid2 216 1 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  {csn 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-sn 4322
This theorem is referenced by:  elsn2  4356  mptiniseg  5790  elsuc2g  5954  extmptsuppeq  7488  fzosplitsni  12793  limcco  23876  ply1termlem  24178  elpmapat  35571  stirlinglem8  40819  dirkercncflem2  40842
  Copyright terms: Public domain W3C validator