![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsn | Structured version Visualization version GIF version |
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elsn | ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elsng 4224 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-sn 4211 |
This theorem is referenced by: velsn 4226 opthwiener 5005 opthprc 5201 dmsnn0 5635 dmsnopg 5642 cnvcnvsn 5648 snsn0non 5884 funconstss 6375 fniniseg 6378 fniniseg2 6380 fsn 6442 fconstfv 6517 eusvobj2 6683 fnse 7339 wfrlem14 7473 mapdm0 7914 fisn 8374 axdc3lem4 9313 axdc4lem 9315 axcclem 9317 opelreal 9989 seqid3 12885 seqz 12889 1exp 12929 hashf1lem2 13278 fprodn0f 14766 imasaddfnlem 16235 initoid 16702 termoid 16703 0subg 17666 0nsg 17686 sylow2alem2 18079 gsumval3 18354 gsumzaddlem 18367 kerf1hrm 18791 lsssn0 18996 r0cld 21589 alexsubALTlem2 21899 tgphaus 21967 isusp 22112 i1f1lem 23501 ig1pcl 23980 plyco0 23993 plyeq0lem 24011 plycj 24078 wilthlem2 24840 dchrfi 25025 snstriedgval 25975 incistruhgr 26019 1loopgrnb0 26454 umgr2v2enb1 26478 usgr2pthlem 26715 hsn0elch 28233 h1de2ctlem 28542 atomli 29369 1stpreimas 29611 gsummpt2d 29909 kerunit 29951 qqhval2lem 30153 qqhf 30158 qqhre 30192 esum2dlem 30282 eulerpartlemb 30558 bnj149 31071 subfacp1lem6 31293 ellimits 32142 bj-0nel1 33065 poimirlem18 33557 poimirlem21 33560 poimirlem22 33561 poimirlem31 33570 poimirlem32 33571 itg2addnclem2 33592 ftc1anclem3 33617 0idl 33954 keridl 33961 smprngopr 33981 isdmn3 34003 ellkr 34694 diblss 36776 dihmeetlem4preN 36912 dihmeetlem13N 36925 pw2f1ocnv 37921 fvnonrel 38220 snhesn 38397 unirnmapsn 39720 sge0fodjrnlem 40951 lindslinindsimp1 42571 |
Copyright terms: Public domain | W3C validator |