![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigagen2 | Structured version Visualization version GIF version |
Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017.) |
Ref | Expression |
---|---|
elsigagen2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐴 ∈ 𝑉) | |
2 | 1 | sgsiga 30535 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (sigaGen‘𝐴) ∈ ∪ ran sigAlgebra) |
3 | sssigagen 30538 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (sigaGen‘𝐴)) | |
4 | sspwb 5066 | . . . . 5 ⊢ (𝐴 ⊆ (sigaGen‘𝐴) ↔ 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) | |
5 | 4 | biimpi 206 | . . . 4 ⊢ (𝐴 ⊆ (sigaGen‘𝐴) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) |
6 | 1, 3, 5 | 3syl 18 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝒫 𝐴 ⊆ 𝒫 (sigaGen‘𝐴)) |
7 | simp2 1132 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ⊆ 𝐴) | |
8 | simp3 1133 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
9 | ctex 8138 | . . . . 5 ⊢ (𝐵 ≼ ω → 𝐵 ∈ V) | |
10 | elpwg 4310 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
12 | 7, 11 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 𝐴) |
13 | 6, 12 | sseldd 3745 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → 𝐵 ∈ 𝒫 (sigaGen‘𝐴)) |
14 | sigaclcu 30510 | . 2 ⊢ (((sigaGen‘𝐴) ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 (sigaGen‘𝐴) ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) | |
15 | 2, 13, 8, 14 | syl3anc 1477 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ (sigaGen‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 class class class wbr 4804 ran crn 5267 ‘cfv 6049 ωcom 7231 ≼ cdom 8121 sigAlgebracsiga 30500 sigaGencsigagen 30531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fv 6057 df-dom 8125 df-siga 30501 df-sigagen 30532 |
This theorem is referenced by: sxbrsigalem1 30677 |
Copyright terms: Public domain | W3C validator |